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Summary

1. Double-tagging experiments are invaluable for determining the accuracy and precision of loca-

tion data provided by different telemetry technologies used with free-ranging animals.

2. We developed a state-space modelling framework for estimating the precision of telemetry loca-

tion data based on double-tagging experiments. The model is simultaneously fitted to multiple data

types with different temporal resolutions while including errors in all data.

3. We used the model to estimate the precision of a specific geolocation method based on light and

sea surface temperature applied to a large marine telemetry dataset. Data were available from dou-

ble-tagging experiments on 111 animals representing seven marine species including 4 sharks, 2

birds and 1 pinniped. Study animals carried electronic tags that provided geolocation estimates as

well as more precise satellite-based location data (Argos andGlobal Positioning System).

4. Estimates of the precision of geolocations were similar to previous findings. The overall esti-

mated SD of geolocation errors for each species ranged from 0Æ5 to 3Æ9� for longitude and 0Æ8 to 3Æ6�
for latitude.

5. While these results are specific to this particular type of location estimation method, the state-

space framework presented here is a robust approach to estimating the precision of various types of

telemetry location data from double-tagging experiments. The model simultaneously allows for

appropriate inferences about true animal locations andmovement.

Key-words: Argos, birds, electronic tagging, geolocation, Global Positioning System, pinni-

peds, precision, sharks

Introduction

A variety of methods and technologies are used to remotely

track themovements of wild animals. Themarine environment

poses particular challenges to tracking as animals range widely

in the open sea and are often far from land. Furthermore,

many marine fish and mammals spend most of their time sub-

merged. Nevertheless, researchers have had great success

tracking marine animals using electronic devices, or tags, that

are attached to the animals (Kooyman 2004; Hooker et al.

2007). For animals that spend all or part of their time at the

surface, technologies that use satellite systems such the Argos

system and the Global Positioning System (GPS) can provide

relatively precise estimates of an animal’s geographic location

when the tag’s antenna is out of the water (McConnell et al.

1992; Weimerskirch et al. 2002; Weng et al. 2005). These tech-

nologies are problematic for animals that spend prolonged

periods of time underwater because of their reliance on radio

transmission through air and real-time communication with

satellites. Geolocation methods use a variety of algorithms to

estimate the geographic location of an animal from archived

data such as time, light, depth and water temperature, and

these methods have been used to estimate the movement paths

of many animals (DeLong et al. 1992; Metcalfe & Arnold

1997; Block et al. 2001; Shaffer et al. 2006). Light-based geolo-

cation methods rely on archived data on solar irradiance,

which can be used to determine the time of sunrise and sunset.

The timing of sunrise and sunset provides information on the

time of midday and day length, which can be used to estimate

longitude and latitude (Smith & Goodman 1986; Hill 1994;

Ekstrom 2004). Light-based geolocations are usually less
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precise than location estimates derived from satellite-based

technologies. For example, day length is informative about lat-

itude near the solstices, but much less so near the equinoxes

(Ekstrom 2007; Sibert et al. 2009). The precision of light-based

latitude geolocations can be improved using archived data on

other environmental variables such as depth and sea surface

temperature (SST; Beck et al. 2002; Teo et al. 2004; Nielsen

et al. 2006). Nevertheless, geolocations tend to vary in their

precision and are limited to estimates that occur once or twice

a day because of the integration of data across several hours or

more to estimate the time of sunrise and sunset and SST.

Quantifying the uncertainty in location estimates is vital for

drawing proper biological inferences from tracking data. Loca-

tion estimates from any technology should be validated to

assess their accuracy and precision. Validation requires knowl-

edge of the true location of the tag.Many studies have assessed

the accuracy and precision of Argos and geolocation estimates

using tags placed at known locations (e.g. Musyl et al. 2001;

Nicholls et al. 2007). Other studies have attempted to replicate

more realistic conditions by validating location estimates from

tags attached to captive animals at known locations (Vincent

et al. 2002; Schaefer & Fuller 2006) or by use of endpoint data

(Teo et al. 2004). Only free-ranging animals can provide a true

test of a technology under realistic behavioural and environ-

mental conditions, but then one must rely on some tracking

technology to determine their true location. The approach that

researchers have commonly taken to validate tracking technol-

ogy on wild animals is double tagging. In double-tagging

experiments, two tracking technologies are used simulta-

neously on the same animal; one technology that provides loca-

tion estimates with relatively high precision and another

technology that provides estimates that require validation and

are assumed to be less precise. Technology pairings have

included GPS and Argos (Kuhn et al. 2009; Costa et al. 2010;

Patterson et al. 2010), GPS and geolocation (Tremblay et al.

2009) and Argos and geolocation (Phillips et al. 2004; Teo

et al. 2004). Often the accuracy and precision of the latter

estimates have been assessed by assuming that the former

estimates represent the true locations. The difficulty with this

assumption is that no technology currently provides location

estimates without error, although some estimates can be very

accurate and precise (e.g. GPS). Furthermore, direct compari-

son of two location data sets is often complicated by differences

in timingwhereby data pairs do not correspond exactly in time.

Animal movement is often modelled as a partially random

process (Codling et al. 2008). Tomake inferences about animal

movement from imperfect estimates of animal locations

requires a statistical framework that accounts for stochasticity

in the underlying modelled process and errors in the observa-

tions of the true state of the system. State-spacemodels provide

such a statistical framework and are useful for analysing

dynamic processes such as population dynamics and move-

ment from time-series data (Durbin & Koopman 2001; Buck-

land et al. 2004; Patterson et al. 2008). State-space models of

animal movement have been developed and fitted to GPS

(Morales et al. 2004), Argos (Jonsen et al. 2005), geolocation

(Sibert et al. 2003) and light data (Nielsen & Sibert 2007).

Observation error in these models has been treated in a variety

of ways including the assumption of no observation error

(Morales et al. 2004), fixed observation error determined from

a separate analysis (Jonsen et al. 2005) and estimation of

observation error within the state-space framework itself

(Sibert et al. 2003). A state-space model is an ideal statistical

tool for validating location estimates from double-tagging

experiments because it can be fitted tomultiple data sets simul-

taneously while accounting for observation errors arising from

both technologies. Furthermore, data from different data sets

do not need to correspond in time because the data relate only

to the common underlying estimated states or locations, not to

each other.

The primary objective of our study was to develop and dem-

onstrate a state-space modelling framework for estimating the

precision of location data from double-tagging experiments.

We applied the framework to data from a number of double-

tagging experiments conducted on seven marine species from a

range of taxa including birds, sharks, and pinnipeds. For each

species, two types of location data were available: satellite-

based estimates (Argos or GPS) and geolocations.We used the

model to estimate the precision of geolocations while account-

ing for errors in the satellite-based estimates. Thus, a secondary

objective of our study was to provide quantitative estimates of

the uncertainty inherent to a common type of geolocation data

available for marine animals. Our modelling framework is

general and flexible and can be adapted to any situation with

multiple location data sets to estimate the precision of those

data and make inferences about the animal’s true underlying

locations andmovement.

Materials and methods

DATA

We analysed data from double-tagging experiments on seven marine

species (Table 1): blue shark (Prionace glauca Linnaeus, 1758),

Galápagos shark (Carcharhinus galapagensis Snodgrass and Heller,

1905), short-finned mako shark (Isurus oxyrinchusRafinesque, 1810),

salmon shark (Lamna ditropisHubbs and Follett, 1947), black-footed

albatross (Phoebastria nigripes Audubon, 1839), Laysan albatross

(P. immutabilis Rothschild, 1893) and California sea lion (Zalophus

californianus Lesson, 1828). For each species, two types of location

data were available: satellite-based estimates (Argos or GPS) and

geolocations. The geolocations we analysed were longitudes derived

using light-based methods (Lotek onboard algorithms and wc-gpe

software version 1.2.5 Wildlife Computers 2005) and latitudes

derived using the algorithm described in Teo et al. (2004). Briefly, the

latitude algorithm used the longitude geolocations and data on SST

to sequentially estimate the latitudes that resulted in the best corre-

spondence between SST measured by the tag and independent, remo-

tely-sensed estimates of SST. Remotely-sensed SST data with a

spatial resolution of 4 km were used preferentially but coarser grids

(9 km) were used when cloud cover resulted in difficulties for the geo-

location algorithm. The temporal resolution of the SST data was

daily (night-time).

There were extended periods of time without Argos/GPS data in

some tracks because of prolonged submergence, hauling out on land

(sea lions) or tag failure. To avoid the model fitting the geolocation
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data too closely during these data gaps and thereby underestimating

geolocation errors, we only analysed geolocations from GMT dates

with Argos/GPS data. Also, geolocations based on poor-quality light

data were manually selected and excluded from our analysis. There

were few geolocations for some animals as a result of tag failure and

poor-quality light data, especially on shorter tracks (e.g. birds).

Therefore, we limited our analysis to animals with ‡5 geolocations.

Two sharks with the lowest frequencies of Argos data were excluded

from our analysis as we were unable to obtain good estimates of their

geolocation errors.

Details about the tagging methods (technologies, dates and loca-

tions) are described in the Supporting Information (‘Tagging meth-

ods’ section in Data S1).

MODEL

We used a state-space framework to model stochastic animal move-

ment while admitting errors in the ‘observation’ of an animal’s loca-

tion. The model was fitted to data from each individual animal

separately and was fitted simultaneously to both data sets for each

animal, the relatively precise set of location data (Argos or GPS) and

the geolocation data. A Bayesian statistical framework was used to

estimate probability distributions for the states (animal locations),

movement parameters and the precisions of the observation errors

for the geolocation data.

Secondarily, we were interested in how well a model fitted only to

the geolocation data for an individual animal would perform in terms

of capturing the estimated locations from the model that was also fit-

ted to the Argos/GPS data for that individual. We assumed that the

latter model provided a more accurate estimate of an animal’s path,

and we were interested in how similar the estimated path would have

been if only the geolocation data had been available, which is the case

in most geolocation tagging studies. Fitting the model only to the

geolocation data for an individual required estimates of the geoloca-

tion error. We took a leave-one-out approach to avoid transfer of

information between the two models for an individual. For each

individual, we calculated a group-specific geolocation error using all

animals of the same group (sharks, birds or pinnipeds) excluding that

individual. The state-space model was then fitted only to the geoloca-

tion data for that animal with the geolocation error fixed at these

group-specific point estimates, which were not informed by that indi-

vidual’s data.We then compared the regular, estimated locations cor-

responding exactly in time between the geolocation-only and Argos/

GPS-and-geolocation model for each individual. Specifically, we

calculated the proportion of mean location estimates from the latter

model that fell within the 95% intervals of posterior probability for

the corresponding location estimates from the former model. This

analysis allowed us to evaluate whether group-specific point estimates

of geolocation errors were suitable for fitting the model to a novel

individual track with only geolocation data. Comparisons of esti-

mated locations between the geolocation-only model and the Argos/

GPS-and-geolocation model for each individual were restricted to

locations with both types of data within ±1 day to avoid comparing

unrealistic location estimates during extended data gaps. Interpola-

tion error increases with the length of a data gap but this error should

have been small within±1 day (Lonergan et al. 2009).

All analyses were performed using the free software R (RDevelop-

ment Core Team 2009) and WinBUGS (Lunn et al. 2000). The Win-

BUGS code for the Argos/GPS-and-geolocation model is presented

in the Supporting Information (‘WinBUGS code’ section inData S1).

Wide, flat prior probability distributions were assumed for the model

parameters (Table 2). Two thousand samples from the joint posterior

probability distribution were obtained by running two chains each of

length 500 000, discarding the initial 100 000 samples, and keeping

every 400th of the remaining samples.We checked convergence of the

error parameter estimates using the potential scale reduction factor,

R̂; values close to 1 were consistent with convergence (Gelman &

Rubin 1992). R̂ was <1.01 for all error parameter estimates, and

Table 1.Number of individuals, track lengths

and numbers of data (Argos/Global Posi-

tioning System (GPS) and geolocation) by

species. All values except n are medians

across individuals with ranges in parentheses.

Track length represents the number of days

withArgos/GPS data

Species n Track length (d) Argos/GPS Geolocation

Sharks

Blue 14 97 (23–301) 129 (28–504) 11 (5–26)

Galápagos 2 33 (22–43) 58 (54–62) 9 (6–11)

Mako 25 255 (47–706) 490 (109–1217) 21 (7–97)

Salmon 34 512 (18–1311) 653 (46–1336) 19 (5–85)

Birds

Black-footed albatross 12 11 (10–22) 265 (165–405) 10 (5–15)

Laysan albatross 15 19 (9–32) 437 (192–693) 16 (6–24)

Pinnipeds

California sea lion 9 79 (74–86) 953 (727–1749) 55 (30–64)

Table 2. Prior probability distributions ass-

umed for model parameters and states. The

t-distribution was used for the xlon,1 and xlat,1
priorswhenfitting themodel toArgos/Global

Positioning System (GPS) and geolocation

data (1) and the normal distribution was used

when fitting the model only to geolocation

data (2). In both cases, ylon,1 and ylat,1
represent theknowndeployment location

Estimated quantity Description Prior

c movement correlation Beta(a ¼ 1,b ¼ 1)

h turning angle U(a ¼ )p,b ¼ p)
R movement variance Inv-Wishart (S)1 ¼ I,m ¼ 2)

xlon,1 initial longitude (1) t(l ¼ ylon,1,r
2 ¼ 0.01,m ¼ 2)

xlon,1 initial longitude (2) N(l ¼ ylon,1,r
2 ¼ 1e)8)

xlat,1 initial latitude (1) t(l ¼ ylat,1, r2 ¼ 0Æ01, m ¼ 2)

xlat,1 initial latitude (2) N(l ¼ ylat,1,r
2 ¼ 1e)8)

log w Argos/GPS error scale U(a ¼ )10,b ¼ 10)

log slon, log slat precision of geolocation data U(a ¼ )1000,b ¼ 1000)
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comparisons of estimated locations between Argos/GPS-and-geolo-

cation and geolocation-only models were limited to locations with

R̂ < 1:1 in bothmodels.

PROCESS MODEL

The process model describing animal movement was the first-differ-

ence correlated randomwalkmodel described by Jonsen et al. (2005).

The basicmovement equation was:

xtþ1 ¼ xt þ dt eqn1

where xt is a vector of length 2 representing the true longitude

and latitude of the animal (in degrees) at time t and dt is a vector

representing the movement in longitude and latitude between

times t and t+1. Movements are correlated over time such that

dt ¼ cTdt�1 þ gt eqn 2

where c is a parameter specifying the correlation between subse-

quent movements, T is a transition matrix specifying the mean

direction of movement and gt is the stochastic deviation in move-

ment between times t and t+1. The movement transition matrix,

T, is parameterized by the mean turning angle, h:

T ¼ cos h � sin h
sin h cos h

� �
eqn 3

Stochastic deviations in movement, gt, were assumed to be nor-

mally distributedwithmean 0 and variance–covariancematrix,R:

R ¼ r2
lon qrlonrlat

qrlonrlat r2
lat

� �
eqn 4

where r2
lon and r2

lat are the variances of longitudinal and latitudi-

nal movement deviations, respectively, and q is the correlation

coefficient.

The estimated quantities in the process model were the true loca-

tions (states) at each point in time, xt and the movement parameters

c, h andR. Speed was not an estimated parameter but rather the resul-

tant vector specified by dt for a given time step. As a result, there was

no explicit prior probability distribution for speed. The implicit prior

for speed during a given time step was a function of the speed during

the previous time step and themovement parameters.

Our model assumed linear movement within a time step. We used a

time step of 6 h for albatrosses and sea lions and 1 day for sharks.

We chose a shorter time step for birds and sea lions because the aver-

age number of Argos/GPS data per day was higher (Table 1). Fur-

thermore, the shorter time step allowed for a more realistic

description of the movement of birds and sea lions, especially given

the relatively high travel speed of birds and the periodic haul-out

behaviour of sea lions. A 1-day time step was used for all species

when fitting the geolocation-only model because the geolocation data

were less frequent.

OBSERVATION MODEL

The observation model related the three types of data, Argos, GPS

and geolocation, to the true animal locations:

yi ¼ li þ ei eqn 5

where yi is the ith (i ¼ 1,2,…n) pair of longitude and latitude

data, li is the corresponding true longitude and latitude and �i
are random, serially independent observation errors. True loca-

tions, li, were calculated from the estimated states that were reg-

ular in time, xt, according to

li ¼ ð1� jiÞxt þ jixtþ1 for i 2 It eqn 6

where It is the set of observations that occurs between times t

and t + 1 and the scalar ji(0 < ji < 1) is the proportion of this

time step that elapsed prior to li.

A scaled t-distribution was assumed for errors in Argos data fol-

lowing Jonsen et al. (2005) so that �i;lon � t
�
0;wslon;qi ; mlon;qi

�
and sim-

ilarly for latitude, where qi is the Argos location quality class of yi,

slon,q and mlon,q are the precision scale parameter and degrees of free-

dom of the t-distribution, respectively, for location quality class q and

w is an estimated parameter that allows the scale of errors to vary

because of variability among tags. The values of slon,q, slat,q, mlon,q and
mlat,q for each of the six Argos location quality classes (3, 2, 1, 0, A, B)

were fixed at the values derived by Jonsen et al. (2005) from their

analysis of Argos data from seals in captivity at a known location

(Vincent et al. 2002). Location quality class Z occurred in the bird

data and was assumed to be of the same quality as class B, although

estimates of quality Z are oftenmuch less precise.

For lack of better information, errors inGPS data were assumed to

follow the same distribution as Argos errors for the best location

quality class, 3. It is important to note that the precision and distribu-

tion of errors in GPS data almost surely differ from those of even

high-quality Argos data. For example, the GPS datamight have been

more precise than we assumed. Nevertheless, given the relatively high

precision of Argos location quality class 3 and the low precision of

the geolocation data, higher-precisionGPS data would have had very

little effect on our estimates of the precision of the geolocation data.

As noted earlier, the geolocation ‘data’ are themselves a complex

function of light and SST data. In the absence of a more appropriate

error model for these geolocation data, we used the normal distribu-

tion as an approximation where �i;lon � N
�
0; slon

�
and similarly for

latitude. The geolocation data did not exhibit extreme outliers as did

theArgos data, so the normal distributionwasmore appropriate than

the t distribution. The precisions of geolocation errors, slon and slat,
were the estimated parameters of primary interest. We subsequently

report these geolocation error estimates as standard deviations, SDlon

and SDlat. We assumed uninformative log-uniform priors for the pre-

cisions of the geolocation data (Table 2; Gelman et al. 2004).

Estimated locations were essentially fixed at known deployment

and recovery locations. For the Argos/GPS-and-geolocation model,

deployment and recovery location data were assumed to be t-distrib-

utedwith a very high precision (error SDof 10 m) and degrees of free-

dom (100 000). For the geolocation-only model, deployment and

recovery location data were assumed to follow a normal distribution

with the same precision as in the Argos/GPS-and-geolocationmodel.

Estimates of longitude and latitude geolocation errors were calcu-

lated for each individual animal, species and species group (sharks,

birds and pinnipeds). Details about how these estimates were calcu-

lated from the posterior probability distributions are described in the

Supporting Information (‘Error estimates’ section inData S1).

Results

The mean estimated travel paths of the animals more closely

matched the satellite-based data (Argos/GPS) than the geolo-

cation data when the state-space model was simultaneously

fitted to both data (Fig. 1, Figs S1–S7). The satellite-based

data were more precise, thus the model fitted these data more

closely. The mean estimated travel paths of the animals were

plausible except during extended gaps in the Argos/GPS data.

For example, noGPS data were available during periods when
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Fig. 1. State-space model fitted to Argos/Global Positioning System (GPS) and geolocation data for three example individuals (a–c, salmon

shark #16; d–f, Laysan albatross #6; g–i, California sea lion #9). Blue and red points represent Argos/GPS and geolocation data, respectively.

Blue and red lines represent the mean estimated paths from the state-space model fitted to Argos/GPS and geolocation data simultaneously and

only geolocation data, respectively. Dashed lines represent intervals of 95%posterior probability. Light grey lines in panels a, d and g represent a

sample of estimated paths (n ¼ 100) from the posterior probability distribution of the geolocation-only model. Triangles indicate known deploy-

ment and inverted triangles indicate known recapture locations. Dark grey represents land. Note that some outlying Argos data are outside of

the plot boundaries and are not shown.
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sea lions were hauled out on land. Thus, the model was uncon-

strained during haul-out periods, which resulted in mean esti-

mated locations that were often slightly different from the

location of the haul-out and large uncertainties in these mean

location estimates (Fig. 1, Fig. S7). Posterior probability inter-

vals for estimated locations were relatively narrow when the

model was fitted to Argos/GPS and geolocation data, except

during data gaps.

The residual differences between the geolocation data and

the estimated paths were often quite large (several degrees or

more) and were variable among individuals and species

(Fig. 2). Longitude residuals were generally centred around

zero. Latitude residuals were also generally centred around

zero, but a substantial negative bias was evident in the latitude

geolocations for many salmon sharks and sea lions. The bias in

latitude geolocations for salmon sharks was greater at higher

Fig. 2.Geolocation residuals from the model fitted to Argos/Global Positioning System and geolocation data. The top panels show all longitude

and latitude residuals (posterior mean residuals) plotted by the corresponding mean estimated longitudes and latitudes for all individuals. The

middle panels show these residuals plotted by day of the year for all individuals. The bottompanels show the lag-1 autocorrelation in these residu-

als for each individual plotted by sample size (the number of residuals or geolocation data per individual). Note that the time between successive

geolocation data was not constant so the autocorrelation does not correspond to a fixed time interval.
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latitudes with a mean bias of )3Æ2� at estimated latitudes

>50�N, but only )0Æ9� at latitudes <50�N. There were no

obvious trends in residual errors with time of year, aside from

the confounding of interspecific differences with date (Fig. 2).

There was no strong evidence of a general sequential autocor-

relation in longitude residuals, but latitude residuals were posi-

tively autocorrelated over time (Fig. 2). The autocorrelation in

latitude residuals was increasingly evident as the length of

tracks (i.e. sample size) increased (Fig. 2). There was little evi-

dence of a strong correlation between longitude and latitude

residuals; Pearson’s correlation coefficient, r, was 0Æ02
(P > 0Æ4) and 0.06 (P < 0Æ01) for the residuals and absolute

residuals, respectively. Less than 15%of individuals had signif-

icant correlations between longitude and latitude residuals

(a ¼ 0Æ05); these individuals were spread relatively evenly

among species, and the significant correlations were positive

and negative. These findings suggest that there was no clear

correlative pattern between longitude and latitude geolocation

errors. There was a significant positive correlation between

absolute longitude geolocation residuals and estimated latitude

for salmon sharks but not for any other species. However, this

correlation was not significant when estimated latitudes

>55�Nwere excluded.

The posterior probability distributions for the estimated

geolocation errors were unimodal, well-defined and differed

from the assumed prior probability distribution (Figs S8–S15).

The estimated errors in geolocations varied among individuals

and species and between longitude and latitude (Table 3,

Table S1, Fig. 3). Estimated longitude error SDs were<1� for
sea lions and all four shark species, while the estimated longi-

tude errors for birds were one or more degrees greater. The

birds also exhibited the widest range in longitude errors among

individuals. Estimated latitude errors were greater than longi-

tude errors for all species except birds. Estimated latitude

errors were <2� for three of the shark species and both birds.

Sea lions had a slightly greater estimated latitude error

(2Æ2 ± 0Æ08�), and salmon sharks had the highest, most vari-

able estimated latitude errors (3Æ6 ± 0Æ08�).
The mean estimated locations from the geolocation-only

model differed from the mean estimated locations from the

Argos/GPS-and-geolocation model (Fig. 1, Supplementary

Figs S1–S7). The mean estimated paths were generally plausi-

ble except during gaps in the geolocation data. The estimated

paths of the sea lions failed to capture the periodic trips to the

haul-out because the geolocation data were less frequent and

less precise. The lower frequency and precision of the geoloca-

tion data also provided less constraint on estimated move-

ments resulting in many implausible paths in the sample of

paths from the posterior probability distribution (e.g. move-

ments over land, large rapid movements; Fig. 1, Supplemen-

tary Figs S1–S7). The posterior probability intervals for the

estimated locations were much wider for the geolocation-only

model (Fig. 1). The proportion of mean estimated longitudes

and latitudes from theArgos/GPS-and-geolocationmodel that

fell within the 95% posterior probability interval for the corre-

sponding estimates from the geolocation-only model varied

among individuals and species (Fig. 4, Supplementary

Table S1). Coveragewas better for longitudewith 69%of indi-

viduals having ‡95%of their mean longitudes from the former

model within the 95% intervals from the latter model. With

respect to latitude, only 38% of individuals had ‡95%
coverage. Mako and blue sharks had the highest percentages

of individuals with ‡95% coverage of longitude (96% and

100%, respectively), followed by sea lions and Laysan

albatrosses (67%). About 56% and 50%of salmon sharks and

Galápagos sharks had ‡95% longitude coverage, respectively,

Table 3. Estimated SD of errors in longitude

(cSDlon) and latitude (cSDlat) geolocations

(degrees) by group and species. The SDs of

these estimates are also presented (r bSDlon

and

r bSDlat

)

Species cSDlon r bSDlon

cSDlat r bSDlat

Sharks 0Æ7 0Æ01 2Æ2 0Æ04
Blue 0Æ5 0Æ03 1Æ6 0Æ09
Galápagos 0Æ7 0Æ12 0Æ8 0Æ15
Mako 0Æ6 0Æ02 1Æ3 0Æ03
Salmon 0Æ9 0Æ02 3Æ6 0Æ08

Birds 2Æ3 0Æ09 1Æ4 0Æ05
Black-footed albatross 3Æ9 0Æ28 1Æ9 0Æ13
Laysan albatross 1Æ9 0Æ09 1Æ2 0Æ06

Pinnipeds 0Æ9 0Æ03 2Æ2 0Æ08
California sea lion 0Æ9 0Æ03 2Æ2 0Æ08
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Fig. 3. Estimated SD of errors in longitude and latitude geolocations

by species. Each boxplot represents the distribution of SDs among

individuals with the thick black line indicating the median, the grey

line indicating themean and the x indicating the weightedmean. Note

the latter two were calculated on the log-scale then back-transformed.

The arrow at the top of the latitude panel indicates an outlying indi-

vidualL. ditropis value, 18Æ0, that is not shown.
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while black-footed albatrosses had the lowest percentage

(25%). Galápagos sharks had complete coverage with respect

to latitude, but the percentages of individuals with ‡95% cov-

erage were much lower for the other shark species, especially

salmon sharks (mako ¼ 56%, blue ¼ 57%, salmon ¼ 12%).

About 42% and 53% of black-footed and Laysan albatrosses

had ‡95% latitude coverage, respectively. Only one sea lion

had ‡95%of its mean latitudes from theGPS-and-geolocation

model within the 95% intervals from the geolocation-only

model.

Discussion

The state-spacemodelling frameworkdeveloped and presented

here is a flexible, statistically robust method for estimating the

precision of location data from double-tagged animals. We

applied the model to two particular combinations of location

data: Argos or GPS and a specific type of geolocation data

derived using a light/SST-based algorithm. Assuming preci-

sions for the Argos and GPS data, we were able to successfully

estimate the precision of the geolocation data.

Our estimates of errors in light-based longitude geolocations

were comparable to previous findings. Estimated SDs of errors

in longitude in our study were about 0Æ5)1� for sharks and sea

lions and 2–4� for albatrosses. Tests of archival tags at known
locations have found mean errors in light-based longitudes of

±0Æ5� or less and SDs <1� (Musyl et al. 2001; Beck et al.

2002; Phillips et al. 2004; Shaffer et al. 2005; Schaefer & Fuller

2006). Sibert et al. (2003) and Sibert et al. (2006) used state-

space models to estimate measurement errors in light-based

longitudes from geolocation tags attached to free-ranging tuna

and found almost all error SDs to be <1�. Double-tagging

studies of drifter buoys (Nielsen et al. 2006) and sharks (Teo

et al. 2004) found root mean square errors (RMSE) <1�
between GPS or Argos longitude estimates and light-based

longitude geolocations. Double-tagging studies of albatrosses

found slightly higher SDs of errors of up to 2� (Phillips et al.
2004; Shaffer et al. 2005). It is important to note that these

types of reported errors betweenArgos/GPS data and geoloca-

tions (SD and RMSE) are not identical to the geolocation

error SDs that we report. The former are calculated from the

differences between the two data types while the latter repre-

sent residual differences between the geolocation data and the

locations estimated by the state-spacemodel.

Errors in light-based longitude geolocations were greatest

for the two albatross species. The errors were likely greater for

the birds than for the other species because of the birds’ faster

average travel speed and the number of east–west movements.

Light-based longitude geolocations assume that the animal

does not move during or between pairs of solar events (sunrise

and sunset; Hill 1994). Larger movements between solar events

result in less precise estimates of longitude. East-west move-

ments in particular result in apparently earlier or later sunrise

and sunset. Longitude geolocation errors were greater for

black-footed albatrosses than for Laysan albatrosses, probably

because black-footed albatrosses were more active at sunrise

and sunset.

Our estimates of longitude error are in units of degrees.

Because the distance per degree of longitude decreases with

increasing latitude, our longitude error estimates are not neces-

sarily appropriate for latitudes not covered by our data. For

example, if geolocation errors were a constant distance, then

one would expect larger longitude errors at higher latitudes

when expressed in degrees. We only observed this for salmon
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sharks at the very highest latitudes, but nevertheless caution

should be used when extrapolating our estimated longitude

errors to other latitudes.

Our estimates of errors in SST-based latitude geolocations

were also comparable to previous findings. We estimated SDs

of errors in latitude of about 1–2� for all species except salmon

sharks whose estimated error was 4�. Double-tagging studies

of a drifter buoy (Nielsen et al. 2006) and sharks (Teo et al.

2004) have foundRMSEs of about 1–1.5� betweenGPS/Argos

latitude estimates and SST-based latitude geolocations. Teo

et al. (2004) found smaller errors for salmon sharks because

most of the data in their study came from lower latitudes

(<50�N; Fig. 2). Shaffer et al. (2005) found SDs of errors

between Argos latitude estimates and SST-based latitude geo-

locations in the range of 1–4� in their double-tagging study of

albatrosses. We found greater estimated latitude errors for

black-footed albatross than for Laysan albatross. Black-footed

albatross tend to travel to areas with warmer water (Kappes

et al. 2010), thus, the differences between the water and air

temperature might not have been as great. Smaller air–water

temperature differentials are problematic for SST-based lati-

tude geolocation andmight have resulted in greater errors. The

latitude geolocation data in our study were derived using the

same basic algorithm that was used by Teo et al. (2004) and

Shaffer et al. (2005).

When we fit the state-space model only to the geolocation

data, the coverage of the mean location estimates from the

Argos/GPS-and-geolocation model by the 95% intervals of

posterior probability was decent with respect to longitude

(about 70% of individuals had ‡95% coverage) but lower with

respect to latitude (about 40% of individuals). One cause of

low coverage was variability in errors among individual tracks.

The group-specific error estimates used in fitting the geoloca-

tion-onlymodel were either underestimates or overestimates of

the error in a given individual track resulting in either over-fit-

ting or under-fitting, respectively, and poorer coverage. The

lowest coverage occurred when geolocation errors were largest

and most variable among individuals (black-footed albatross

longitude and salmon shark latitude).

A second cause of low coverage was violations of our

assumption of random, independent, normally distributed

geolocation errors, specifically bias and autocorrelation. The

results that coverage was poorer for latitude than for longitude

and that bias and autocorrelation were also worse for latitude

geolocations support this conclusion. Series of systematically

biased errors tended to pull the estimated path away from the

true path over time resulting in autocorrelated residuals. Fur-

ther autocorrelation was induced by the geolocation algorithm

itself because each latitude geolocation was partially a function

of previous latitudes (Teo et al. 2004). The posterior probabil-

ity intervals were not wide enough to account for this bias and

autocorrelation.

There are several likely reasons why the latitude geoloca-

tions were sometimes biased in a specific direction. Latitude

geolocations for salmon sharks and sea lions exhibited a south-

ward bias. One problem for geolocation with these species was

their use of areas with low SST gradients, which was challeng-

ing for the geolocation algorithm. The latitudinal SST gradient

was low and not necessarily monotonic at the northern end of

the salmon shark range (Teo et al. 2004; Ruckert 2007). The

geographic area used by the sea lions was small, particularly in

relation to the spatial resolution of the SST data. Furthermore,

as the geolocation algorithm did not produce estimates over

land, there was a greater tendency for southward errors than

northward errors in the northern Gulf of Alaska and Southern

California Bight. There are inherent limitations to the geoloca-

tion algorithm used when tracks are short, the area covered is

small and the SST gradient is low.

We could have estimated directional biases in the geoloca-

tion data within the state-space framework (Sibert et al. 2003),

which would have increased the estimated precision of the geo-

locations. However, the magnitude and direction of bias were

variable among individuals within species. Because of this vari-

ability, we chose not to account for bias in geolocations for

individual tracks, but rather allowed any bias to artificially

inflate the estimated random error in the geolocations. Thus,

our estimates of geolocation error SDs are larger but alsomore

conservative when applied to other geolocation tracks for

these species in these geographic areas. Ideally, bias would be

modelled as a function of explanatory covariates such as lati-

tude.

The error estimates that we have presented for light-based

longitude and SST-based latitude geolocations (Table 3) can

subsequently be used when fitting our state-space model to

similar geolocation tracks for which independent information

on measurement error is not available. Incorporating these

measurement errors in the fitting of the model will result in

more appropriate estimates of uncertainty for modelled loca-

tions. This uncertainty should then be accounted for in subse-

quent spatial analyses (Block et al. 2011). It is important to

recognize that for any one individual track, the overall group-

specific errors will likely be lower or higher than the error in

the geolocations for that track. Thus, using these group-spe-

cific errors will result in over- or under-fitting.

Our modelling study highlighted several aspects of the

framework presented here that should be further studied and

developed in the future. One improvement would be more

appropriate error distributions for the telemetry data as tag

technology has evolved rapidly. Several recent studies have

examined the accuracy and precision of Argos data using GPS

data for reference (Kuhn et al. 2009; Tremblay et al. 2009;

Costa et al. 2010; Patterson et al. 2010), and an analysis of

those results to update Argos location class-specific error dis-

tributions would be useful. Information about the distribution

of errors in Fastloc GPS data is also highly desirable. There is

a large scope for improving the error distributions that we used

for light- and SST-based geolocations. The observation model

could be extended to allow for serial dependence in geoloca-

tions, and this extension would possibly improve the coverage

of true locations by the posterior probability intervals of a

model fitted to these data. Ideally, the model would be fitted to

the raw light and SST data and error distributions would be

derived for those data. Lam et al. (2010) have developed a

state-spacemodel that can be fitted to such data.
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A few aspects of our process model could also be developed

further. Our model assumed a regular time step with linear

movement during each step. Continuous-time state-space

models allow for variable lengths of time steps defined by the

data themselves (Johnson et al. 2008; Gurarie et al. 2009; Patt-

erson et al. 2010). A continuous-time framework would poten-

tially allow for amore realistic model of animalmovement, but

may also be challenging to implement in the context ofmultiple

data types and the estimation of observation error parameters.

Constraints on movement speed and locations on land could

be imposed through prior probability distributions to improve

the realism of the posterior probability distributions of tracks

when themodel is fitted only to geolocation data.

Finally, we fit our model to each individual’s data sepa-

rately, estimating separate parameters for each individual. A

hierarchical state-space framework would allow the model to

be fitted to multiple individuals simultaneously while estimat-

ing distributions of parameters across individuals (Jonsen et al.

2006). Such distributions could serve as prior probability dis-

tributions for error parameters when fitting the model to novel

tracks, potentially eliminating the need to use fixed point esti-

mates.

The state-space frameworkpresented here is a robust statisti-

cal approach to analysing location data from double-tagging

experiments. This state-space framework has advantages over

simple data comparisons because it acknowledges errors in all

data, not just the less precise data, and it can accommodate a

range of data types with different temporal resolutions. State-

spacemodels can be fitted to asmany location data types as are

available.Furthermore, because the state-spacemodel incorpo-

rates an underlying model of animal movement, one can make

appropriate inferences about true animal locations and move-

mentwhile simultaneously estimatingmeasurement errors.
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Supporting Information

Additional Supporting Information may be found in the online ver-

sion of this article.

Data S1. Supplementary methods including WinBUGS code for

Argos ⁄GPS-and-geolocation model, details on tagging and calcula-

tion of error estimates.

Table S1.Number of Argos/GPS data (nArgos/GPS), number of geolo-

cation data (ngeolocation), model track length (d), estimated SD of

errors in longitude (cSDlon) and latitude (cSDlat) geolocations (degrees),

SDs of these error estimates (r bSDlon

and r bSDlat

), and the proportion of

mean estimated longitudes and latitudes from the model fitted to

Argos/GPS and geolocation data that fell within the 95% posterior

probability interval for the corresponding estimates from the model

fitted to only geolocation data (coverage; n ¼ number of locations

that were compared betweenmodels) for each individual.

Figures S1–S7. State-space model fitted to Argos/GPS and geoloca-

tion data for example individual black-footed albatrosses [Supple-

mentary Fig. S1, individuals #5 (a–c), #1 (d–f), #6 (g–i) and #11 (j–l)],

Laysan albatrosses [Supplementary Fig. S2, individuals #8 (a–c), #3

(d–f), #13 (g–i) and #10 (j–l)], mako sharks [Supplementary Fig. S3,

individuals #1 (a–c), #9 (d–f), #6 (g–i) and #13 (j–l)], blue sharks

[Supplementary Fig. S4, individuals #1 (a–c), #2 (d–f), #8 (g–i) and

#3 (j–l)], salmon sharks [Supplementary Fig. S5, individuals #28

(a–c), #14 (d–f), #20 (g–i) and #3 (j–l)], Galápagos sharks [Supple-

mentary Fig. S6, individuals #1 (a–c) and #2 (d–f)], and California

sea lions [Supplementary Fig. S7, individuals #4 (a–c), #2 (d–f), #5

(g–i) and #6 (j–l)]. Blue and red points represent Argos/GPS location

and geolocation estimates, respectively. Blue and red lines represent

the mean estimated paths from the state-space model fitted to Argos/

GPS and geolocation data simultaneously and only geolocation data,

respectively. Dashed lines represent intervals of 95%posterior proba-

bility. Light grey lines in panels a, d, g and j represent a sample of esti-

mated paths (n ¼ 100) from the posterior probability distribution of

the model fitted to only geolocation data. Triangles indicate known

deployment and inverted triangles indicate known recapture loca-

tions. Dark grey represents land. Note that some outlying Argos data

are outside of the plot boundaries and are not shown.

Figures S8–S11. Prior and posterior probability distributions for SD

of errors in longitude (SDlon) for all individuals. Red lines indicate
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means on logscale back-transformed. Much of the prior density was

near zero, however, there was non-zero prior density across the full

range of the x-axis and beyond its upper limit although it is not visible

on the plot.

Figures S12–S15. Prior and posterior probability distributions for SD

of errors in latitude (SDlat) for all individuals. Red lines indicate

means on logscale back-transformed. Much of the prior density was

near zero, however, there was non-zero prior density across the full

range of the x-axis and beyond its upper limit although it is not visible

on the plot.
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