
1 Supplementary Figures1

Supplementary Figure 1: Schematic of dominant ocean current features in the north Pacific Ocean. The
California Current Large Marine Ecosystem is outlined (dashed line). The north Pacific Transition Zone is
delineated by the dotted lines.
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Supplementary Figure 2: Weekly mean latitude (black line) of predators that primarily inhabited or migrated
to the CCLME. (a) Pacific bluefin tuna, (b) yellowfin tuna, (c) mako shark, (d) salmon shark, (e) white shark
and (f) blue whale. Uncertainty in the estimated latitude was displayed by summing the posterior latitude
samples within a 1 degree latitude band across the CCLME for each 1 week period from late 2000 to January
1, 2010. The color bar denotes the number of MCMC samples within the 1◦ latitude x 1 week cells. The
number of tracks used for each species (N) is given in each panel.
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Supplementary Figure 3: Quarterly median sea surface temperatures (a-d) and chlorophyll-a from 2002-
2009 (e-h). Contour lines represent the 95th percentile of relative density for the entire northeast Pacific
Ocean shown in Figure 4a,b (the highest 5% of relative densities fall within the contour lines). The area
of highest relative density moved northward as waters warmed and chlorophyll-a increased (quarter 3) and
southward (quarter 4) as waters cooled.
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Supplementary Figure 4: Track duration and fidelity. Multi-year track displaying fidelity in consecutive
years (a) Pacific bluefin tuna (903 days, year 1 •◦, year 2 •◦, year 3 •◦, year 4 •◦, year 5 •◦), (b) Salmon shark
(862 days) and (c) Mako shark (707 days). (d) Female northern elephant seals tagged in consecutive years
show fidelity to rookery and migration paths. Lower track: female tracked during post-moult migrations of
2004 •◦ and 2005 •◦. Upper track: female tracked during post-breeding migrations in 2005 •◦ and 2006 •◦.
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Supplementary Figure 5: Spatial densities of (a) tagged predators, (b) simulated predators and (c) their
differences (observed - simulated). Observed and simulated densities were calculated after applying time-
weighting for tag attrition and species normalizations; observed densities were calculated from posterior
mean location estimates. The colour scale in panel c represents the difference in log spatial density.
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Supplementary Figure 6: Comparison of observed (black) with the simulated (red) mean proportion of time
spent within the CCLME for each tagged species. Simulated mean proportions were obtained from the null
model simulations of each species’ movement patterns. The error bars around observed means are the bi-
nomial 95% confidence intervals. Significant differences between simulated and observed mean proportion
of time spent in the CCLME are denoted with asterisks along the right vertical axis. (a) Species tagged
outside the CCLME and (b) species tagged inside the CCLME. Sample sizes (number of track datasets) are
in parentheses after each species name. Note that leatherback turtles were tagged at two distinct locations,
in Monterey Bay, CA (Mon) and in Indonesia (Ind).
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Supplementary Figure 7: Environmental correlates of large predator density.Generalized additive mixed
model response curves from (a,b) binary presence / absence and (c,d) relative use models from the eastern
Pacific. Model response is shown for (a,c) temperature (solid red lines) and (b,d) Chla(solid green lines),
and dashed lines represent 95% confidence limits. Histograms show (a,b) the counts of total available
habitat (i.e., number of 1-degree grid cells) in the eastern Pacific and (c,d) the counts of available habitat
(i.e., number of 1-degree grid cells) in the eastern Pacific that was used by at least one TOPP species. The
vertical axes are partial responses (estimated, centered smooth functions) on the scale of the linear predictor
(logit in a,b; log in c,d).
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2 Supplementary Methods2

2.1 Electronic tracking data3

TOPP scientists deployed a wide range of electronic tag models produced by a number of manufacturers4

including: Lotek Wireless (LTD 2310, 2400), Microwave Telemetry (Pico-100), Sirtrack (Kiwisat 202), Sea5

Mammal Research Unit (SLDR), Telonics (ST-6, ST-10 and ST-15) and Wildlife Computers (PAT Mk10,6

Avian Cricket, SPOT 4.0 and 5.0, Mk9 archival tags). In general tags were glued to pinnipeds31, harnessed7

on to turtles32, taped or banded to sea birds33, implanted in tuna34, bolted to dorsal fins35 or sub-dermally8

attached to sharks12 and sub-dermally attached to whales36.9

Test deployments to examine tag technologies and attachment strategies occurred on a subset of species from10

1999-2001, and large-scale tag deployments commenced in 2002. Improvements in tag design, attachment,11

and database management led to the longest and largest dataset ever assembled on the movements of multiple12

species of marine vertebrates (Supplementary Tables 1 and 2).13

Animal locations were observed by electronic tags using two primary methodologies: light-based geoloca-14

tion and the Argos satellite network.15

Archival tags and pop-up archival transmitting (PAT) tags, deployed on tuna, sharks and seabirds, used light-16

based geolocation. Light-based geolocations were estimated from day length and the time of local noon37,38
17

and were further refined by matching satellite observed sea surface temperature (SST) to temperatures ob-18

served by the tag when possible33,39. This method does not require animals to surface and can be effectively19

performed using very small tags.20

Satellite tags were deployed on marine mammals, large sea birds, sea turtles and sharks. Satellite tags21

perform best near the poles because of increased Argos satellite coverage and can collect as many as 4022

locations per day at high latitudes, but will collect 3-10 locations a day near the equator under good condi-23

tions.24

Supplementary Tables 2 and 3 provide detailed information on the tag deployments.25
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2.2 Gaps in tracking data26

In most deployments, gaps in data did not exceed the state-space model (SSM) location estimate frequency27

of 1 estimate per day. Gap frequency varied by species and tagging method (Supplementary Table 4).28

Where gaps were long (> 20 days) tracks were split into segments and reassembled after SSM filtering (see29

“State-space models”, below) without including estimated locations during the gaps. This prevented us from30

introducing unrepresentative estimated locations that were not sufficiently constrained by data into any of31

the figures or subsequent analyses using the SSM-filtered locations.32

Supplementary Table 4: Median and (mean) number of gaps of a given length per track by species. In most
taxa, more than half of tracks contained no gaps greater than 5 days (medians = 0 in the 5 d column). Only
in leatherback sea turtles and salmon sharks did more than half the tracks contain gaps greater than 10 days.
Gaps up to 20 days are robustly handled by SSM fitting44. Tracks with gaps longer than 20 days were split
into separate segments at the gap and the period of the > 20 d gap was discarded from the analysis.

Species
Frequency of gaps Tag

N tracks
2 d 3 d 5 d 10 d 20 d type

Bluefin Tuna 3 (7.11) 1 (2.15) 0 (0.63) 0 (0.1) 0 (0.03) geoloc∗ 320

Yellowfin Tuna 1 (2.87) 0 (0.74) 0 (0.19) 0 (0.04) 0 (0.01) geoloc 225

Albacore Tuna 14 (16.1) 8 (7.74) 3 (3.18) 0 (0.5) 0 (0.09) geoloc 22

White Shark 2 (2.51) 2 (2.31) 2 (1.61) 0 (0.57) 0 (0) geoloc 67

Salmon Shark 21 (28.09) 12 (18.43) 6 (9.5) 2 (3.3) 0 (0.85) Argos 113

Shortfin mako Shark 21.5 (22.4) 8 (9.51) 2 (3.26) 0 (0.71) 0 (0.1) Argos 68

Blue Shark 16 (20.72) 8 (11.47) 4 (4.53) 0 (0.94) 0 (0.09) Argos 59

Common thresher Shark 2 (1.57) 0 (0.43) 0 (0.43) 0 (0.14) 0 (0) geoloc 14

Sooty Shearwater 0 (2.36) 0 (1) 0 (0.4) 0 (0.08) 0 (0) geoloc 36

Laysan Albatross 0 (0.39) 0 (0.29) 0 (0.2) 0 (0.06) 0 (0.02) geoloc 247

Blackfooted Albatross 0 (0.47) 0 (0.33) 0 (0.22) 0 (0.14) 0 (0.06) geoloc 149

Leatherback Turtle 15 (25.06) 5 (9.44) 2 (4.44) 1 (1.51) 0 (0.66) Argos 98

Loggerhead Turtle 0 (0.79) 0 (0.79) 0 (0.64) 0 (0.29) 0 (0.29) Argos 16

N. Elephant Seal 0 (4.16) 0 (2.46) 0 (1.01) 0 (0.4) 0 (0.2) Argos 321

California Sea Lion 0 (0.51) 0 (0.3) 0 (0.22) 0 (0.19) 0 (0.13) Argos 136

Blue Whale 3 (7.14) 2 (3.82) 0 (1.19) 0 (0.26) 0 (0.05) Argos 52
∗ geolocation

2.3 State-space models33

State-space models (SSMs)14 were fitted to all the tracking data to account for observation error, to regular-34

ize animal location estimates in time and to interpolate over small gaps resulting from missing observations35

of animals locations. We collectively refer to these objectives as “filtering” and used a Bayesian implemen-36

tation to filter both the Argos- and geolocation-based tracking data. The process model assumes that the first37

14



differences, dt, in an animal’s locations are a correlated random walk with mean turning angle θ and move38

autocorrelation γ:39

dt = γT(θ)dt−1 + ηt (1)

where dt is the first difference in the true but unobserved locations xt and xt−1 and T(θ) is a matrix40

describing the rotation between dt and dt−1,41

T(θ) =

(
cos θ − sin θ
sin θ cos θ

)
(2)

and ηt is the stochastic deviation in movement between times t and t− 1, which is assumed to be normally42

distributed with mean 0 and variance-covariance matrix Σ:43

Σ =

(
σ2lon ρσlonσlat

ρσlonσlat σ2lat

)
(3)

The process model in (Eq. 1) was fitted to tracking data using an observation model that allowed irregularly44

timed observations with time-varying non-normal errors14:45

yi = µi + εi (4)

where yi is the ith (i = 1, 2, . . . , n) pair of longitude and latitude data, µi is the corresponding true longitude46

and latitude and εi are random, serially independent observation errors. The estimated true locations, µi,47

were calculated from the estimated states that were regular in time, xt, according to:48

µi = (1− ji) xt−1 + jixt for i ∈ It (5)

where It is the set of observations that occurs between times t − 1 and t and the scalar ji(0 < ji < 1) is49

the proportion of this time step that elapsed prior to µi. This approach results in a linear interpolation of the50

µi’s along the straight line paths between the regularly estimated states, xt−1 and xt.51

Errors in Argos data were assumed to be scaled t-distributed19 so that εi,lon ∼ t (0, ψτlon,qi , νlon,qi) and52

similarly for latitude, where qi is the Argos location quality class of yi, τlon,q and τlat,q and νlon,q and νlat,q,53

are the precision scale parameters and degrees of freedom of the t-distribution, respectively, for location54

quality class q, and ψ is an estimated parameter that allows for variability in the scale of errors arising from55

variability among tags. We fixed the values of τlon,q, τlat,q, νlon,q and νlat,q for each of the 6 Argos location56

quality classes (3, 2, 1, 0, A, B) at values derived from an analysis of Argos data from seals in captivity57

at a known location (Supplementary Table 5)45,14. Location quality class Z was assumed to be of the same58

quality as class B.59

15



Errors in geolocation data were assumed to be normally distributed so that εi,lon ∼ N (0, τlon), and simi-60

larly for latitude. The precisions of geolocation errors, τlon and τlat, were estimated from double-tagging61

experiments and captive studies (see next section).62

Estimated locations were effectively fixed for known deployment and recovery locations by assuming very63

high data precision. For models fitted to Argos data, deployment and recovery location data were assumed to64

be t-distributed with an error SD of 10 m and 100,000 degrees of freedom. For models fitted to geolocation65

data, deployment and recovery location data were assumed to be normally distributed with the same error66

SD.67

The state-space model was fitted separately to each track using the software WinBUGS that conducts68

Bayesian statistical analyses using Markov chain Monte Carlo (MCMC) sampling46. For each track, 269

MCMC chains each of length 10,000 were run and a sample of 2,000 from the joint posterior probability70

distribution was obtained by discarding the first 5,000 iterations and retaining every 5th of the remaining it-71

erations. Supplementary Fig. 8 shows the fit of the state-space model to six example Argos and geolocation72

tracks.73

We assessed the quality of the SSM fit for each individual track. The SSM fits to Argos and geolocation74

observations were visually inspected for obvious problems like poor fits to the data and unrealistic estimated75

movements. MCMC algorithm convergence was assessed using the R̂ statistic. R̂ is the ratio of variances for76

the parameters and states between the MCMC chains, and when models are well converged, values should be77

near 147. In almost all cases R̂ values were very near 1. When they were not, usually only a single estimated78

location was involved produced by a single bad observation. Eliminating at most a few problematic data (or79

assigning these data a lower location quality class) usually solved the problem. Location estimates that were80

made from periods when there were large data gaps (> 20 days) were dropped from the analysis, as model81

fits are not well constrained when data are completely absent. Tracks with a poor fit due to uncorrectable or82

intractable problems were discarded (e.g., early failure or malfunctioning of tags).83

Supplementary Table 5: Fixed error distributions for Argos data of different location quality classes used
in the filtering model. Errors were assumed to be t-distributed with a scale parameter expressed here as SD
(degrees of longitude or latitude) and ν degrees of freedom. These values are from an analysis14 of Argos
data from seals in captivity at a known location45.

Location quality class SDlon νlon SDlat νlat

3 0.0026 3.1 0.0011 2.1
2 0.0028 2.0 0.0023 6.3
1 0.0081 2.3 0.0041 3.9
0 0.019 2.0 0.014 2.0
A 0.0046 2.0 0.0046 2.0
B 0.038 2.0 0.027 2.0

2.4 Estimating geolocation errors84

A challenge to analyzing our dataset was the mixture of technologies that were used to collect location data85

from the multiple animals observed. Argos location and geolocation estimates have substantially different86

16



Supplementary Figure 8: State-space model fitted to three example Argos tracks (a - blue whale, b - northern
elephant seal, c - salmon shark) and 3 example geolocation tracks (d - Laysan albatross, e - Pacific bluefin
tuna, f - white shark). Red points represent Argos location and geolocation estimates and solid black lines
represent the mean estimated paths from the fitted state-space model. The light grey areas represent the full
posterior probability distribution of the estimated paths as approximated by a sample of 2000 paths from the
posterior obtained using MCMC sampling.

17



error precisions associated with them, the former generally being higher. State-space methods have been87

developed for filtering geolocation data and estimating their error precisions48,49, however, the underlying88

process model and statistical framework in those studies differed from our filtering model. In order to pro-89

duce consistent, comparable filtered tracks across technologies, we chose to use the same filtering model for90

Argos and geolocation data. It is difficult to estimate the error and bias in geolocation data given only those91

data, particularly for short tracks. In a state-space framework, the estimation of the errors and bias can be92

confounded with the estimation of the parameters of the movement model. Furthermore, large systematic93

biases in geolocation data can only be determined by having more accurate data on a tag’s location. Because94

of these difficulties in estimating geolocation errors from geolocation data alone, we derived independent95

estimates of the precision of geolocation data from separate studies in which tags were deployed on captive96

animals at known locations or ’double-tagging’ experiments in which wild animals carried both geolocation97

tags and Argos tags (Winship et al., in review). We fixed the error precisions of the geolocation data for98

a given technology at the estimates from these analyses of data from the same technology (Supplementary99

Table 6). The precision of geolocation errors can vary among individual tracks even within a single tech-100

nology. Because we fixed the precision of geolocation errors at a single value for each technology, some101

individual tracks will have been undersmoothed and some will have been oversmoothed. Nevertheless, in102

the absence of other data for the geolocation tracks, the fixed estimates that we assumed were the best103

information available.104

The precision of archival tag geolocations for tuna was estimated from archival tag data on 37 captive Pacific105

bluefin tuna at two known locations. Double-tagging data were available from blue (n=15), Galápagos106

(n=3), mako (n=25), and salmon sharks (n=23). Only salmon shark data south of 50◦N were considered107

for these analyses, as geolocation errors north of this latitude are greater and are not representative of the108

errors at the latitudes used by white sharks. Errors in PAT tag geolocations of white sharks were estimated109

from the PAT/Argos double-tagging experiments on the four other shark species whose locations overlapped110

latitudinally. Errors in archival tag geolocations of birds were estimated from archival/Argos double-tagging111

experiments on two albatross species, black-footed (n=12) and Laysan albatrosses (n=15).112

Two datasets, Argos location and geolocation, were available for each double-tagged animal. The state-113

space filtering model was fitted simultaneously to both datasets for each individual to estimate the geoloca-114

tion error precision. Supplementary Fig. 9 illustrates the model fit for an example track. We only analyzed115

data from individuals with ≥5 geolocations and we only analyzed geolocation data from dates with corre-116

sponding Argos data. We assumed wide, flat prior probability distributions for the model parameters. Sam-117

ples from the joint posterior probability distribution were obtained by running two chains each of length118

120,000, of which the initial 20,000 samples were discarded, and every 100th of the remaining samples119

were retained for a total sample size of 2,000. Convergence of the error parameter estimates was assessed120

by examining the potential scale reduction factor (R̂).121

We calculated mean estimates of geolocation errors in longitude and latitude for each individual animal,
species and species group (sharks, black-footed albatross and Laysan albatross). We report the estimated
geolocation errors as SDs where SDlon =

√
1
τlon

, and similarly for latitude. For each individual i, the
samples of SDlon and SDlat from the joint posterior probability distribution were log-transformed and means
and variances were calculated (log SDlon,i and σ2log SDlon,i

, respectively, and similarly for latitude). Each
group mean was then calculated on the log-scale (log SDlon) as the average of the individual means weighted
by the inverse of their variance50:

log SDlon =

∑
iWi log SDlon,i∑

iWi
(6)
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where
Wi =

1

σ2log SDlon,i

(7)

The variance of the group mean on the log-scale (σ2
log SDlon

) was calculated as64:

σ2
log SDlon

= (
∑
i

Wi)
−1 (8)

The group means and their variances were then back-transformed according to:

SDlon = elog SDlon (9)

and
σ2SDlon

= e2 log SDlone
σ2
log SDlon (e

σ2
log SDlon − 1) (10)

The SDs of tuna geolocation errors were calculated from the root mean square error (RMSE) between122

geolocation estimates and known locations of individual captive Pacific bluefin tuna in open sea pens (3538123

and 2462 longitude and latitude geolocations, respectively). The overall pooled RMSE was calculated from124

the individual RMSEs according to the standard equation for a pooled variance estimate. A double-tagging125

experiment on 9 free-ranging California sea lions in a different geographic area resulted in similar precision126

estimates for this type of archival tag (Winship et al., in review).127

Supplementary Table 6: Fixed error SDs (degrees) of geolocation data used in the filtering model. The SDs
of geolocation error estimates from the analysis of double-tagging data are also presented.

Species SDlon σSDlon
SDlat σSDlat

Species estimated from

white shark 0.64 0.012 1.9 0.035 4 shark spp.
black-footed albatross 3.8 0.27 1.9 0.13 black-footed albatross
Laysan albatross, sooty shearwater 1.9 0.090 1.2 0.056 Laysan albatross
P. bluefin, yellowfin, albacore tuna 0.77 1.9 Pacific bluefin tuna

2.5 Behavioural switching analyses128

A switching state-space model (SSSM) was used to discriminate between latent resident (slow, area re-129

stricted movements) and transient (fast, directed movements) behavioral states in a subset of species’ tracks.130

Stochastic switching models have been used to infer hidden patterns from data in fields such as Ecology51,52,53,131

Epidemiology54 and Econometrics55,56. We use the state-space model described in Eqns 1-5 and allow132

stochastic switching between two sets of the movement parameters, γ and θ, one for each assumed be-133

havioral state. The switching is governed by a simple discrete Markov chain process commonly used in134

behavioural ecology57. The SSSM has two process models, one for each assumed behavioral state:135

dt,k = γbt,kT(θbt,k)dt−1,k + ηt (11)
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Supplementary Figure 9: State-space model fitted to Argos and geolocation data for an example Laysan
albatross track. Black and red points represent Argos and geolocation data, respectively. Solid black lines
represent the mean estimated path from the state-space model fitted to Argos and geolocation data simulta-
neously. For comparison, the solid red lines represent the mean estimated path from the state-space model
fitted to only the geolocation data with the error SDs fixed at their mean estimates (2.4◦ and 1.4◦ for longi-
tude and latitude, respectively). Triangles indicate known deployment and inverted triangles indicate known
recapture locations. The light grey lines in panel a represent the full posterior probability distribution of the
estimated path from the model fitted to only geolocation data as approximated by a sample of 2000 paths
from the posterior obtained using MCMC sampling. In panels b and c, dashed lines represent intervals of
95% posterior probability for estimated locations from the two models.

where bt,k is the behavioral state at time t for individual k, bt,k = 1 (transient) or 2 (resident). Switches136

between behavioral states are modelled by assuming that an individual can decide to change from the current137

state to another one with a fixed probability given by the Markov chain 14:138

Pr(bt,k = i|bt−1,k = j) = αij (12)

where αij is the probability of the animal being in behavioral state i at time t given that it was in behavioral139

state j at time t − 1. We estimate α11, the probability of remaining in the transient state, and α12, the140

probability of switching from the resident to the transient state. The probabilities of the two other possible141

transitions are the complements.142

The process model in Eqn. 11 was linked to the observation model described in Eqns 4-5.143

The switching model was fitted as a hierarchical model to all tracks simultaneously within a species, al-144

lowing improved estimation of the behavioural state indices, bt,k, for all individuals. Information about the145

movement parameters γ and θ was shared across all tracks by assuming the value of these parameters for a146

given behavioral state were the same for all individuals58. This is the simplest approach given that we are147

only interested in the bt,k’s, and not γ or θ, for each individual.148

Tracks were selected from each of 9 species; white shark (n=10), mako shark (n=10), salmon shark (n=10),149

Pacific bluefin tuna (n=10), yellowfin tuna (n=10), blue whale (n=10), blue shark (n=10), northern elephant150

seal (n=10 female, 10 male), and leatherback turtle (n=10). Each species spent prolonged periods within151

the California Current, or had a tendency to travel to and from the California Current. These tracks were152
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selected to represent the “average” or predominant movement pattern(s) exhibited by each species.153

The switching state-space model was fitted to all datasets with a 1-day time-step.154

2.6 Weighting and normalization155

Multi-species electronic tagging datasets have biases associated with varying track durations (among in-156

dividuals within a species) and sample sizes (among deployments, life history stages, and years within a157

species and among years across species). For all species, the number of tagged individuals decreased with158

time since deployment due to loss of battery power, biofouling, premature detachment, or mortality. Conse-159

quently, we applied a weighting scheme to the location estimate dataset to account for a high abundance of160

abbreviated tracks near the tagging location. Secondarily, we normalized the dataset by species to account161

for over-representativeness of species with large sample sizes.162

2.6.1 Weighting to account for unnaturally abbreviated tracks163

Estimating space-use from electronic tagging data can be problematic due to the abrupt end of records164

associated with tag failure, early release, and commercial harvest. In our dataset, these mechanisms resulted165

in a high number of short duration tuna, shark, whale and turtle tracks, biasing spatial coverage of the dataset166

toward the tagging locations, and obscuring ecological patterns. We accounted for skewed spatial coverage167

due to an overabundance of short tracks by applying a weighting scheme to each location.168

First we developed a basic time weighting scheme, whereby for a given species, we weighted each location
estimate by the inverse of the number of individuals of that species that had location estimates for the same
relative day of their track:

wit = 1/njt for i ∈ Ij (13)

where wit is the weight for the tth location estimate of the ith individual’s track, njt is the number of169

individuals of species j with a tth location estimate, and Ij is the set of individuals of species j. Individuals170

with data gaps greater than 20 days were not included when calculating the number of individuals with171

location estimates for a given relative day of their track during the gap periods.172

Under this weighting scheme, individual location estimates more proximal to the tagging location received173

a lower weight than later locations because more individuals had location estimates earlier in their tracks.174

Longer tracks received a higher total weight than shorter tracks because they had more location estimates.175

By increasing the weight of later locations and longer tracks, the calculated spatial density for these species176

should be more representative of natural spatial coverage and less affected by tag loss, failure, and a spatial177

bias toward deployment location.178

Simulation tests indicated that our basic time weighting scheme was appropriate for very large sample sizes,179

but that it produced biased estimates of spatial density patterns when sample size was lower and more similar180

to the species-specific sample sizes in our study (see next section). To minimize this bias, we modified the181

basic time weighting scheme by implementing a threshold relative day of the track beyond which location182

weights were set equal to the weight on that threshold day. Simulation tests indicated that a threshold183

corresponding to the 85th percentile of track lengths for a given species approximately minimized the bias184

21



across a range of scenarios with respect to sample size, movement, rate and distribution of tag loss and185

failure, and the resolution of the spatial density grid.186

We applied a single threshold time weighting scheme to reduce the bias in spatial density patterns arising187

from tag loss and failure across many species. However, the overall multi-species density pattern was188

relatively robust to our choice of weighting scheme (Supplementary Fig. 10).189

No weighting was applied to estimated locations of pinnipeds and seabirds where approximately 75-99%190

of tags were recovered and remained operational throughout the deployment duration; variance in track191

duration for these species is due largely to phenology (short vs. long migration of northern elephant seals),192

or individual variation in migration lengths, rather than tag loss or harvest. For these species, every location193

estimate was weighted equally (wit = 1).194

2.6.2 Simulation test of threshold time weighting scheme195

We tested the appropriateness of our threshold time weighting scheme on simulated data where we knew the196

true underlying spatial density pattern.197

Tracks were simulated according to a biased random walk movement model:198

lt = lt−1 + c + ηt (14)

where lt is a vector of length two describing the location of the animal at time t, [xt, yt], c is a vector199

describing the bias in movement and ηt is the stochastic deviation in movement between times t and t− 1,200

which is assumed to be normally distributed with mean 0 and variance-covariance matrix Σ:201

Σ =

(
σ2x 0
0 σ2y

)
(15)

All simulated tracks were 100 time units long and originated at (0, 0) with a small amount of variability in202

the initial x location.203

Three different movement scenarios were considered. In the first scenario, animals dispersed with a constant204

directional bias (c = [0,−0.1], σx = 1, σy = 0.1). In the second scenario, animals dispersed with a205

directional bias that reversed after half the time had elapsed (c = [−0.4,−0.4] for t = 0 to 50, c = [0.4, 0.4]206

for t = 50 to 100, σx = 0.5, σy = 0.1). In the third scenario, animals dispersed with no directional bias207

(c = [0, 0], σx = 0.5, σy = 0.5).208

Tag loss and failure was simulated by drawing a sample of random track lengths from a probability dis-209

tribution and truncating the simulated data tracks to those lengths. Three distributions were considered:210

exponential, gamma, and triangular. When a random track length exceeded the maximum track length, the211

maximum track length was used.212

We then applied four different weighting schemes to the simulated track data with tag loss: 1) no weighting,213

2) using only the longest 25% of tracks, 3) basic time weighting, and 4) threshold time weighting.214
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We compared spatial density maps for the full simulated tracks (the ’true’ density) to density maps for215

the simulated data with tag loss and the four different weighting schemes. Density maps were derived by216

binning and summing the number of locations (or weights) on a spatial grid.217

In addition to examining several movement scenarios and distributions of track lengths, we considered218

ranges of sample size, rate of tag loss and spatial grid resolution.219

Correspondence between the true spatial density pattern and the spatial density pattern for data with tag loss220

and a given weighting scheme was assessed visually and by calculating the sum of squared differences in221

density between corresponding cells on the two grids. Density grids were first normalized to sum to 1 before222

calculating the sum of squares.223

The results of this simulation analysis indicated that the basic time weighting scheme most closely matched224

the true spatial density pattern when sample size was very high (Supplementary Fig. 11). However, when225

sample size was smaller (e.g., 100 tracks), basic time weighting resulted in large biases whereby the ends of226

long tracks were overrepresented on the density map. Threshold time weighting performed better at small227

sample sizes because the weights at the ends of the longest tracks were smaller. Given the species-specific228

sample sizes in our actual data set, we decided to apply the threshold time weighting scheme to the real data.229

Sample size also had a strong effect on the threshold percentile that resulted in the greatest correspondence230

(lowest sum of squares) between the true spatial density grid derived from simulated tracks and the corre-231

sponding density grid when tag loss and threshold time weighting were applied (Supplementary Fig. 12). As232

sample size increased, the optimal threshold increased. A threshold percentile of 100% corresponds to basic233

time weighting, so this result is consistent with the result that basic time weighting performed best when234

sample size was very large. For sample sizes of 50-100 tracks in our default scenario, the optimal threshold235

percentile was about 80-90%. Across the ranges of movement scenarios, rates of tag loss, distributions of236

track lengths and spatial grid resolutions explored, the optimal threshold percentile was generally between237

about 80% and 95%. In many cases the sum of squares tended to increase more rapidly as the threshold238

percentile increased beyond the optimal value, than it did as the threshold percentile decreased from the239

optimal value. Thus, it was better to underestimate the threshold percentile than to overestimate it, with240

respect to recovering the true spatial density pattern. Based on the results of this simulation analysis we241

chose to use a threshold percentile of 85% when applying the threshold time weighting scheme to the real242

data.243

2.6.3 Normalization to account for unequal sample sizes among species244

The total weights for each species were normalized to 1 so that within the study area each species contributed
equally to the described multi-species density patterns:

dit = wit/
∑
i∈Ij

Ti∑
t=1

wit (16)

where dit is the relative density contribution of the tth location estimate for individual i, and Ti is the245

number of location estimates for individual i. The relative density contributions for all location estimates246

for all individuals (dit) were then summed within the longitudinal/latitudinal cells of the study area grid.247
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Supplementary Figure 10: Multi-species relative density in study area derived with four different weighting
schemes: a) threshold time weighting (85%ile threshold), b) no time weighting, c) basic time weighting,
and d) only using longest 25% of tracks for each species.
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Supplementary Figure 11: Relative density grids for simulated tracks with two different sample sizes and
four different weighting schemes. Red indicates highest density and blue indicates lowest density. Panels
a and b represent the density derived from 100 and 10000 biased random walks, respectively (movement
scenario 1). Spatial grid cells are 0.5 by 0.5. Panels c and d represent the density of these data after simulat-
ing tag loss and failure according to an exponential distribution of track lengths with a decay parameter of
0.05. Panels e and f represent the density of the longest 25% of tracks shown in panels c and d, respectively.
Panels g and h represent the density of the data in panels c and d after basic time weighting was applied.
Panels i and j represent the density of the data in panels c and d after threshold time weighting was applied
with a threshold of the 85th percentile of track lengths.
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Supplementary Figure 12: Sum of squared differences between relative density grids for simulated tracks
and relative density grids for the same tracks with simulated tag loss and threshold time weighting. Sum of
squares is plotted by the threshold percentile. The five panels illustrate the effect of varying five parameters
of interest (default values in parentheses): sample size (100 tracks), movement scenario (1), tag attrition
decay rate (0.05), attrition curve or distribution of track lengths (exponential), and spatial grid resolution
(0.5).
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2.7 Null model simulations of animal movement248

We employed a null model of animal movement to determine whether the observed density pattern could249

arise simply due to diffusion from the chosen tagging locations. We assumed that the observed movements250

can be approximated by a correlated random walk59 with three fundamental parameters: mean turn angle,251

move persistence and move variability. These three parameters were estimated from the observed tracks252

with the state-space filtering model described in Eqns 1-5 as θ, γ and Σ, respectively. These movement253

parameters effectively set the diffusion rate of a tagged “population”. In other words, they determine the254

rate at which the tagged group of individuals spreads out from their initial tagging location.255

To simulate animal movements, we first obtained averages of the three estimated parameters across all256

tagged individuals within each species. Then, using the process model described in Eqns 1-3, we simulated257

the same number of tracks as were observed and started the simulated tracks at the actual tagging locations258

for each species. We also ensured that the simulated tracks had the same distribution of durations as was ob-259

served for each species (see Table 1). We repeated this approach for a total of 5 replicates and, after applying260

the same threshold time-weighting and species normalizations as for the observed data (see Weighting and261

normalization), calculated the spatial density for all 5 replicates combined. This spatial density represents262

an approximation of the “simulated truth” with the 5 replicates serving to reduce Monte Carlo error. The263

simulated spatial densities were divided by 5 to facilitate comparison with the observed densities.264

2.8 Relationships between predator distribution and oceanography265

Time-weighted, species-normalized relative density data were modeled as a function of environmental vari-266

ables to describe the functional relationship between top predator distribution and the environment of the267

northeastern Pacific Ocean study area.268

2.8.1 Satellite data269

We assembled time series of quarterly mean, median, standard deviation and median absolute deviation270

fields of satellite-derived oceanographic parameters (chlorophyll a (Chl), sea surface temperature (SST), sea271

surface height (SSH), and curl of wind stress). Bulk statistics were calculated for each available parameter272

within 1◦ × 1◦ cells of the same grid used to calculate relative density (-180 to -100◦E, 0 to 62◦N) for a273

given quarter (21 June 2002 through 21 June 2009). Quarterly long-term medians (2002-2009) were also274

generated.275

Chlorophyll a, derived from the Moderate Imaging Spectrometer using the OCM-3 algorithm6, w0as chosen276

as a proxy for primary producers. The natural distribution of phytoplankton for the region of interest follows277

a log-normal distribution. Thus, we log-transformed the satellite-derived Chl for both display and analysis.278

Sea surface temperature fields were blended from a variety of infrared and microwave satellite sensors61,62.279

Sea surface height anomaly fields derived from the multiple satellite altimeters63 were acquired from AVISO,280

Inc. Standard deviations of the SSH fields (SSHSD) were also calculated based on the SSH data present281

within each quarterly grid cell. The curl of the wind stress64 was calculated from ocean surface vector282

winds65 derived the SeaWinds instrument on the QuikSCAT spacecaft.283
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2.8.2 Generalized additive mixed models284

Generalized additive mixed models (GAMMs) provided the best approach to modeling our data due to the285

non-linearity of many ecological relationships. We used a two-model approach to deal with the large number286

of zeroes, non-normality and non-constant variance of the relative density data. A binary habitat model was287

used to model presence/absence where 1◦ cell densities > 0 were coded as 1 and cell densities of zero288

were coded as 0. The presence/absence GAMM had a binomial likelihood and a logit link function. A289

relative habitat use model was used to model relative density within 1◦ cells with non-zero density. The290

relative habitat use GAMM had log-transformed relative density as the response, a Gaussian likelihood291

and an identity link function. The response was log-transformed to normalize the data and standardize292

their variance. Explanatory variables considered for both models were latitude, longitude, year, season293

(quarter), log(Chl) as a proxy for phytoplankton abundance, SST for thermal preferences, SSH and SSHSD294

as indicators of mesoscale activity, and wind stress curl as an estimate of oceanic convergence/divergence.295

Numerous works link increased biological activities to features that may be resolved by these properties66,67.296

Latitude and longitude were included as a measure of spatial structure resulting in no significant residual297

spatial autocorrelation in the residuals of either model. We assessed cross-correlation among the response298

and explanatory variables by examining pairwise Pearson’s correlation coefficients. Year and quarter were299

treated as a random effect with each unique combination of year and quarter corresponding to a separate300

intercept. The GAMM models can be represented by the following equation:301

yijk =f1(SSTijk) + f2(log(Chlijk)) + f3(latitudeijk) + f4(longitudeijk)+

f5(SSHijk) + f6(SSHSDijk) + f7(windcurlijk) + γjk + εijk (17)

where yijk is logit(presence/absence) in the presence/absence model and log(relative density) in the relative302

density model for 1◦ grid cell i in quarter j of year k, f ’s represent spline functions of the explanatory303

variables, γ is a random intercept effect for each quarter-year combination and ε represents random error.304

Note that log(relative density) does not indicate a log link function but rather log-transformed response.305

Explanatory variable sets included in the final models were chosen based on the models with the lowest306

Akaike’s Information Criterion (AIC). We assessed spatial autocorrelation in the relative density data and307

relative density model residuals using Moran’s I statistic. All analyses were conducted using the statistical308

software R68, and its libraries mgcv69, nlme70, spdep71, ncf72, and ape73.309

Cross-correlation coefficients were low except among latitude, SST and log chlorophyll-a. For the final310

relative density model we found that the global Morans I statistic was not significant at α = 0.05 (p = 0.062)311

indicating that minimal spatial patterns remained in the residuals. For the presence/absence model the312

Moran’s I statistic was also slightly non-significant (p = 0.053). Moran’s I statistic values ranged from313

-0.0063 to 0.154 for the relative density model and -0.0003 to 0.046 for the presence/absence model across314

quarters and years.315

We used the GAMM results to spatially map habitat with sea surface temperature and chlorophyll-a response316

values greater than zero. By overlaying normalized density values on these spatial grid cells, we created a317

Potential Habitat Utilization Index (PHUI) indicating where the highest relative use by the most TOPP318

species would be predicted as a function of temperature and chlorophyll (Supplementary Figure 3).319
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2.9 Niche separation within guilds320

To test whether species within guilds experienced, on average, different SSTs, we fitted a linear mixed321

effects model74 to the daily mean SST values for all tracks within a guild. We used the individual id as a322

grouping factor and an AR(1) autocorrelation structure for the within-individual errors and then tested for323

significant differences in average SST among species within a guild. The model had the following general324

form:325

y(t)jk = sk + γjk + ε(t)jk (18)

where y(t)jk is the mean SST on day t for individual j of species k, sk is a factor representing the species,326

γjk is a random intercept for individual j of species k and ε(t)jk is the within-individual error, such that:327

ε(t)jk = φε(t−1)jk +N(0, σ2) (19)

where φ is the lag 1 autocorrelation parameter.328

We fitted this model separately to data from each of the following three guilds: albatrosses (Laysan and329

black-footed), tunas (Pacific bluefin and yellowfin), and lamnid sharks (shortfin mako, white and salmon).330

The white and salmon shark SST distributions were bimodal, indicative of the migration patterns of these331

species between areas characterized by distinctly different SST regimes. Accordingly, we estimate sepa-332

rate means for these different components of the white and salmon shark SST distributions by introducing333

two additional levels to the species factor, sk, one for each species. All models were fit using Maximum334

Likelihood estimation in R68 with the nlme package70.335

3 Supplementary Discussion336

3.1 Null model simulations of animal movement337

The simulated spatial densities indicate the pattern arising from species-specific diffusion away from initial338

tagging locations. The dominant hotspot is centred on the CCLME, with density declining farther to the339

north, south and west (Supplementary Fig. 5). Smaller hotspots are evident in Prince William Sound, where340

salmon sharks were tagged (top of Supplementary Fig. 5), and French Frigate Shoals, where Laysan and341

Black-footed albatrosses were tagged (northwestern Hawaiian Islands).342

Despite the high concentration of tagging effort within the CCLME, observed densities of tagged predators343

within the CCLME are generally higher than expected based on the simulations (Supplementary Fig. 5).344

Although observed densities are similar to the simulated densities within the California Bight portion of345

CCLME, they tend to be higher immediately adjacent to the coast north of the Bight and higher throughout346

much of the southern CCLME (adjacent to the Baja Peninsula; Supplementary Fig. 5). Observed densities347

decline sharply at the 200 nmi limit of the Can-US-Mexico EEZ’s, whereas simulated densities decline348

much more gradually with distance from the US coast (compare Supplementary Fig. 5 a and b). Finally,349
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the simulations greatly under-predict the density of predators within the north Pacific Transition Zone and350

along the Alaskan coast, west of Prince William Sound (Supplementary Fig. 5c).351

Combined, these results suggest that the observed spatial density of tagged predators in the north Pacific is352

not due simply to the tagging design employed and subsequent diffusion of tagged animals.353

3.2 Fidelity to the CCLME354

In the main text, we illustrate with a selection of tracks of different species the fidelity of large predators to355

the CCLME (Fig. 2). Here we support these statements with a comparison of the observed and expected356

mean proportion of time spent by each species within the CCLME. We refer to fidelity as either the attraction357

of predators, tagged at distant locations, to the CCLME or the retention of predators tagged within the358

CCLME. We use the null model simulation, described above, to generate the expectation for each species359

and calculate binomial 95% confidence intervals for the observed mean proportion of time spent within360

the CCLME. The test is two-sided as species can spend either more or less time within the CCLME than361

expected based on the null movement model.362

We grouped species according to whether they were tagged in the CCLME or outside; species tagged outside363

the CCLME generally had both lower expected and observed mean proportion of time spent in the CCLME364

than species tagged within the CCLME (Supplementary Fig. 6). Eleven of 17 tests revealed a significant365

difference between expected and observed mean proportion of time spent in the CCLME. Species tagged in366

the CCLME showed variable patterns against their expected mean proportion of time in the CCLME (Sup-367

plementary Fig. 6a). In general, species tagged outside of the CCLME spent significantly more time in the368

CCLME than expected, including very long distance migrants; leatherback turtles tagged in Indonesia and369

sooty shearwaters tagged in New Zealand (Supplementary Fig. 6b). With the exception of short-finned mako370

sharks, California sea lions and blue whales, the non-significant differences occurred for species with low371

sample sizes. For species that spent a significantly lower proportion of time in the CCLME than expected,372

two are return migrants (white shark and northern elephant seals), and the Monterey-tagged leatherback373

turtles were likely making return migrations to nesting beaches in the western.374

3.3 Relationships between predator distribution and oceanography375

3.3.1 Satellite data376

Many TOPP species made N-S migrations in concert with seasonal changes in oceanic condition as shown377

by monthly Chl and SST climatologies (Fig. 3b, Supplementary Fig. 3). As temperature increased and378

productivity decreased in the southern region of the California Current System (CCS), the median latitude for379

tunas, sharks, and blue whales also moved northward. Seabirds and pinnipeds did not show the same north-380

south migration in concert with temperature. Instead they were generally found further north, demonstrating381

a different use of the thermal and foraging seascape in the CCS than other guilds.382
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3.3.2 Generalized additive mixed models383

The fitted relative density model with the lowest AIC included all explanatory variables; the presence/absence384

model with the lowest AIC excluded latitude and sea surface height standard deviation (Supplementary Ta-385

bles 7 and 8).386

Supplementary Table 7: Summary statistics of fitted GAMMs. Morans I statistic was calculated from the
residuals of the fitted models and can range from -1 to 1 with values > 0 indicating spatial clustering
and values < 0 indicating dispersion. Morans I statistic p-values indicate that there was residual but non-
significant spatial clustering in the presence/absence model and in the relative density model.

Presence/absence Relative density

Proportion of deviance explained 0.303 0.232
AIC 598375 74780.45
Moran’s I statistic 0.013 0.050
Moran’s I p-value 0.053 0.062

Supplementary Table 8: Model variables in final fitted presence/absence and relative density GAMMs.

Explanatory variable Estimated DF F p-value

Presence/absence
s(Xsst) 3.986 2506.99 < 0.001
s(log(Xchl)) 3.945 1077.67 < 0.001
s(Xlon) 3.979 131.35 < 0.001
s(Xssh) 3.867 20.3 < 0.001
s(Xcurl2b) 3.935 58.6 < 0.001

Relative density
s(Xsst) 3.90 31.01 < 0.001
s(log(Xchl)) 3.95 226.84 < 0.001
s(Xlat) 3.94 122.57 < 0.001
s(Xlon) 3.97 147.62 < 0.001
s(Xssh) 1.48 72.25 < 0.001
s(Xsshstd) 3.31 20.11 < 0.001
s(Xcurl2b) 3.78 26.63 < 0.001

By using both presence/absence and relative density models we were able to differentiate cells that top387

predators used at least once from cells that were frequently used by the normalized species and individual388

density. The results from the presence/absence model show that the majority of habitat used by top predators389

was found at waters near 15◦C but across many chlorophyll-a concentrations. When looking at use within390

identified habitat, relative density was greatest in cells with high chlorophyll-a concentrations.391

The estimated relationship between the probability of presence and SST was convex with a peak at about392

15◦C (Supplementary Fig. 13a). Presence had a more complicated relationship with log(chlorophyll-a)393

peaking at values of -1 (0.1 mg/m3 Chl-a). Presence relative to longitude increased from 180 to 120◦W394

peaking at the CCS. Probability of presence was greatest around SSH values of 0. There was no significant395

pattern between presence/absence and curl at extreme values but there was a strong positive relationship396
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with positive curl values between 0 and 1×10−6.397

There was a positive relationship between relative density and SST that peaked between 20-25◦C (Sup-398

plementary Fig. 13b). The relationship between relative density and chlorophyll-a was also positive. The399

relationships between relative density, latitude and longitude indicate the importance of the CCS and South-400

ern California Bight while the longitude relationship shows a small second peak near Hawaii. Relative401

density had a positive relationship with sea surface height but a negative relationship with the standard de-402

viation of SSH. There was a concave relationship between relative density and wind curl with the estimated403

minimum around -2.5×10−7.404

Supplementary Figure 13: Estimated relationships between presence/absence (a) and relative density (b)
and explanatory variables in final fitted GAMMs.
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3.4 Niche separation within guilds405

3.4.1 Albatrosses406

The linear mixed-effects (LME) model revealed a significant difference between mean SSTs experienced by407

Laysan and black-footed albatrosses (Supplementary Table 9). The standard deviation of the random effect408

(individual) was small, implying little among individual variation in mean SSTs experienced. Autocorrela-409

tion (lag 1) of daily SSTs within individuals was high (φ = 0.97) and comparison of AICs and the likelihood410

ratio for models with and without an AR(1) correlation structure strongly favoured the AR(1) formulation411

(∆ AIC = 13,664; L ratio = 13,666, p ≤ 0.0001).412

Supplementary Table 9: Summary of linear mixed-effects model fit to daily SSTs for black-footed and
Laysan albatrosses. The intercept term is the mean SST for black-footed and s2 represents the difference in
mean SST between Laysan and black-footed albatrosses. The standard deviation of the random effects term
was 0.0018, with a residual error of 5.20.

Term Value S.E. df t-value p-value

Intercept 17.84 0.55 8,667 32.60 0
s2 -3.87 0.73 53 -5.30 0

3.4.2 Tunas413

The linear mixed-effects (LME) model revealed a significant difference between mean SSTs experienced414

by Pacific bluefin and yellowfin tunas (Supplementary Table 10). The standard deviation of the random415

effect (individual) was moderate, implying some among-individual variation in mean SSTs experienced.416

Autocorrelation (lag 1) of daily SSTs within individuals was high (φ = 0.96) and comparison of AICs and417

the likelihood ratio for models with and without an AR(1) correlation structure strongly favoured the AR(1)418

formulation (∆ AIC = 171,833.3; L ratio = 171,835.3, p ≤ 0.0001).419

Supplementary Table 10: Summary of linear mixed-effects model fit to daily SSTs for Pacific bluefin and
yellowfin tunas. The intercept term is the mean SST for bluefin and s2 represents the difference in mean
SST between yellowfin and bluefin tunas. The standard deviation of the random effects term was 0.91, with
a residual error of 2.02.

Term Value S.E. df t-value p-value

Intercept 17.36 0.09 74,801 190.54 0
s2 4.19 0.14 374 29.50 0
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3.4.3 Sharks420

The linear mixed-effects (LME) model revealed a significant difference between mean SSTs experienced421

by shortfin mako and salmon sharks and between shortfin mako and white sharks (α = 0.05; Supplemen-422

tary Table 11). White and salmon sharks occupied similar SST space in the 10 - 15 ◦C range, as judged423

by overlap in their respective 95% confidence intervals, but otherwise used distinctly warmer and colder424

waters, respectively (Fig. 5). The standard deviation of the random effect (individual) was small, implying425

little among-individual variation in mean SSTs experienced. Autocorrelation (lag 1) of daily SSTs within426

individuals was high (φ = 0.97) and comparison of AICs and the likelihood ratio for models with and with-427

out an AR(1) correlation structure strongly favoured the AR(1) formulation (∆ AIC = 27,350.13; L ratio =428

27,352.14, p ≤ 0.0001).429

Supplementary Table 11: Summary of linear mixed-effects model fit to daily SSTs for shortfin mako, salmon
and white sharks. The intercept term is the mean SST for shortfin mako, ssc represents the difference in
mean SST between salmon sharks in colder waters and shortfin mako sharks, ssw represents the difference
in mean SST between salmon sharks in warmer waters and shortfin mako sharks, and similarly for white
sharks (wsc and wsw). The standard deviation of the random effects term was 0.02, with a residual error of
3.07.

Term Value S.E. df t-value p-value

Intercept 18.49 0.30 12,830 62.53 0
ssc -11.57 0.38 134 -30.77 0
ssw -5.06 0.37 134 -13.51 0
wsc -6.14 0.37 134 -16.56 0
wsw 2.59 0.37 134 6.98 0
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