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 ROBUST STATE-SPACE MODELING OF ANIMAL MOVEMENT DATA

 IAN D. JONSEN,',3 JOANNA MILLS FLEMMING,1,2 AND RANSOM A. MYERS'

 'Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4J1 Canada
 2Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 4J] Canada

 Abstract. Remotely sensed tracking data collected on animal movement is vastly un-
 derutilized due to a lack of statistical tools for appropriate analysis. Features of such data
 that make analysis particularly challenging include the presence of estimation errors that
 are non-Gaussian and vary in time, observations that occur irregularly in time, and com-
 plexity in the underlying behavioral processes. We develop a state-space framework that
 simultaneously deals with these features and demonstrate our method by analyzing three
 seal pathway data sets. We show how known information regarding error distributions can
 be used to improve inference of the underlying process(es) and demonstrate that our frame-
 work provides a powerful and flexible method for fitting different behavioral models to
 tracking data.

 Key words: Argos satellite telemetry; Bayesian; behavior; dispersal;foraging; migration; random
 walks; switching models; uncertainty; WinBUGS.

 INTRODUCTION

 The advent of miniaturized satellite transmitters has

 led to the collection of a plethora of animal movement
 data. These data are complex both in their underlying
 biological mechanisms and in their statistical proper-
 ties. For example, given sufficient time and resolution,
 any pathway will represent multiple behavioral pro-
 cesses and hence estimation of movement parameters
 becomes nontrivial. Do we estimate single parameters
 for the whole pathway, ignoring important behavioral
 variability? How do we determine where one dominant
 behavior ends and another begins? Furthermore, many
 remote sensing devices such as Argos satellite tags
 (e.g., Austin et al. 2003) and archival tags (e.g., Teo
 et al. 2004) impose complex error structures on the
 data that must be dealt with appropriately so that im-
 portant biological variability can be separated from ar-
 tificial noise. These issues pose a serious challenge to
 ecologists studying movement behavior.

 Jonsen et al. (2003) proposed a state-space frame-
 work for analysis of movement data using a simplistic
 random walk model fitted to simulated data. State-

 space models are time-series methods that allow un-
 observed states and biological parameters to be esti-
 mated from data observed with error. A useful feature

 of these methods is that two principle sources of un-
 certainty, namely estimation error arising from inac-
 curate observations and process variability arising from
 stochasticity in the movement process, can be account-
 ed for separately. Here, we propose a more complex
 state-space framework that enables one to deal with

 biological and statistical complexities associated with
 satellite tracking data. This is accomplished by for-
 mulating movement models appropriate for such data
 and by using robust statistical methods.

 Our focus here is on remotely sensed data collected
 via the Argos satellite system but the general approach
 can be applied to other data types; e.g., radio, GPS, or
 archival telemetry. Argos data are categorized into six
 quality classes based generally on the number of up-
 links from transmitter to satellite, the time between
 these uplinks, and the time since a previous location
 was estimated (Austin et al. 2003). The estimation er-
 rors associated with these quality classes vary through
 time and are strongly non-Gaussian. Furthermore, the
 Argos-derived locations are observed irregularly
 through time, which imposes an artificial perspective
 on the movement process(es). We utilize a statistically
 robust approach that accounts for these features of the
 data coupled with a correlated random walk model that
 is appropriate for location data and that can be gen-
 eralized to handle complexity in the underlying be-
 haviors (e.g., Morales et al. 2004). We illustrate our
 framework by analyzing three seal data sets that differ
 in biological and statistical complexity.

 METHODS

 Our data consist of locations observed through time.
 These locations may be complex in terms of the un-
 derlying biology, but the behavior that we wish to es-
 timate does not derive from the locations in space, it
 derives from changes in the way animals move. We
 therefore need to develop a model that estimates un-
 observable states from locations observed with error,

 because these are the data typically available. Included
 in the model are underlying biological dynamics that

 Manuscript received 15 December 2004; revised 17 June
 2005; accepted 21 June 2005. Corresponding Editor: G. M.
 Henebry.
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 describe changes in move direction and speed, the nat-
 ural descriptors of animal movement.

 Transition equation

 The first component of the state-space model is the
 transition equation, which describes a Markov process
 where unobservable states evolve over regular time in-
 tervals given the previous state, process variability, and
 biological parameters (see Harvey [1993] for further
 details). The transition equation describes the dynamics
 of the movement process being modeled. We start by
 setting down a transition equation for a simple random
 walk:

 x,+I = x, + i, (1)
 where x, is a two-dimensional vector of the unobserved
 states at time t, i.e., the true locations in terms of lat-

 itude and longitude, regularly spaced through time, and

 , is the process variability. Assuming zero correlation
 in the process variances for the two dimensions, Eq. I
 is the simplest type of movement model for location
 data.

 A correlated random walk (CRW) model is a more
 natural way to think about animal movement because
 it describes many of the processes that we know to
 occur and is the basis for more complex behavior (e.g.,
 Turchin 1998, Morales et al. 2004). The CRW for lo-
 cation data is based on the first difference of the lo-

 cations. In other words, the random walk occurs on the
 differences in consecutive locations, i.e., the move-
 ments, and not on the locations themselves (as is the
 case in Eq. 1). We begin by writing

 d, - Td,_, + N2(0, 1) (2)

 where d,_l is the difference between the locations x,_1 and x,_2, and d, is the difference between the locations
 x, and x,_1. As noted earlier, x, is a coordinate vector,
 and hence d, is also a vector. T is a transition matrix
 that describes the rotational component of the corre-
 lated random walk:

 (cos 0 -sin 0
 T(0) = sin 0 cos 0 (3)

 where 0 is the mean turning angle. N2 is a bivariate
 Gaussian distribution with mean 0 and the following
 covariance matrix:

 /( Tlon P "lon lon ()

 = \p O'n~IO n 2t (4)
 where Oon is the process variance in longitude, oa is
 the process variance in latitude, and p is the correlation
 coefficient. Eq. 2 describes a random walk that is au-
 tocorrelated in both direction and speed. In order to
 allow for lesser degrees of autocorrelation we add the
 term y, with y = 0 yielding a simple random walk and
 0 < y < 1 yielding a random walk with correlation in
 both direction and move speed. We refer to the model

 as a first-difference CRW (DCRW). The transition
 equation for this model is specified as

 d, - yTd,_, + N2(0, ). (5)

 Complex behavior: switching models

 The transition equation (Eq. 5) assumes that the
 movement pathway can be fully described by a single
 first difference CRW. However, it is easy to imagine
 pathways forming as the sum of several distinct be-
 haviors. In order to capture this additional complexity,
 we can formulate an alternative to Eq. 5 where move-
 ment parameters are estimated for each distinct behav-
 ior. Suppose that we have two behaviors, where ot,
 represents the probability of being in behavioral mode
 I at time t given the same behavioral mode at time t
 - 1, and e2 represents the probability of being in be-
 havioral mode I at time t given behavioral mode 2 at
 time t - 1. This formulation provides the basis of a
 switching model (DCRWS) where the movement pa-
 rameters are then indexed by behavioral mode (Morales
 et al. 2004). Effectively, we have a transition equation
 for each behavioral mode. This approach can allow for
 further complexity simply by expanding the number of
 possible behavioral modes.

 Measurement equation

 The second component of the state-space formula-
 tion relates the unobserved states predicted by the tran-
 sition equation to the observed data; consequently, it
 is termed the measurement equation. An implicit as-
 sumption here is that the observations are made over
 regular time intervals that correspond to the time step
 modeled in the transition equation (Harvey 1993).
 However, Argos data are observed irregularly through
 time, thus some sort of a priori data regularization to
 obtain equal time intervals is usually performed. This
 can be problematic when none or very few observations
 occur within a specified interval as one may not have
 enough information to properly estimate a location.
 Here we propose an alternative to a priori data regu-
 larization by allowing the irregularly observed data to
 be modeled directly within the state-space framework.

 We let i be an index for locations (if any are ob-
 served) between time t and t + 1; i.e., i = (0, 1, 2,
 ... n,). We make the simplifying assumption that an-
 imals travel in a straight line between x,_- and x,. This
 poses no difficulty for state transitions with reasonably
 short time steps, relative to the resolution of the data,
 and allows us to interpolate a best estimate for each of

 the irregularly observed locations, y,;:

 y,; = (1 - ji)x,_, + jix, + e, (6)
 where ji is the proportion of the regular time interval
 between x,_ , and x, at which the ith observation is made
 (0 < ji < 1) and e, is a random variable representing
 the estimation error. Note that the ji's can be calculated
 from the data if the time of day is recorded with each
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 observed location. This formulation allows for the pos-
 sibility of having multiple measurement equations for
 each transition equation. Note that for regular intervals
 where no observations exist, we set i = 1 andji = 0.5.

 A particular challenge for analyzing many kinds of
 movement data is the need to deal with extreme ob-

 servations in an objective fashion (e.g., Fig. 1A). In
 current analyses of movement data, extreme observa-
 tions are typically removed a priori, for example, by
 filtering on a maximum rate of travel (e.g., McConnell
 et al. 1992, Austin et al. 2003). This may be reasonable
 for very large deviations. The problem, however, is
 what to do with less obvious deviations; how do we
 determine if they are erroneous? One approach to deal-
 ing with these deviations has been to throw out all the
 poor-quality data (classes B, A, and 0), but, for diving
 animals, this represents approximately 90% of the data
 (e.g., Vincent et al. 2002). Even more sophisticated
 filtering approaches result in data loss (Austin et al.
 2003). These data can be tremendously expensive to
 collect, so utilizing state-space filtering methods are
 clearly advantageous because they do not remove
 "noisy" data, they account for the noise in the data.

 We choose to use independent t distributions to mod-
 el both the latitude and longitude components of es-
 timation error in Eq. 6. That is, for estimation errors

 in latitude of quality class q (q = 1, .... 6) we let
 Et,lat,q ~ t(0, Tlat,q, Vlat,q), where Tlat,q is the scale parameter

 and viat,q is the df (and similarly for the longitude es-
 timation error). The t distribution is robust in the sense
 that it has the effect of making extreme values less
 unlikely under the model, thereby minimizing their in-
 fluence on parameter estimation. Note that the Gaussian
 distribution is a special case of the t distribution as v
 - oo. At this point, our robust state-space model for
 irregularly observed data is fully described by Eqs. 5
 and 6.

 Rather than estimate the parameters of each t dis-
 tribution directly within the state-space model, we ob-
 tain independent estimates a priori by making use of
 published data derived from Argos-tagged gray seals,
 Halichoerus grypus (Fabricius 1791), that were caged
 at a known location (Vincent et al. 2002). A total of
 425 locations for four caged seals were observed, four
 of which were extreme observations (i.e., >100 km
 from the true location; three in quality class 0 and one
 in quality class 2). See Vincent et al. (2002) for a com-
 plete description of the data. For the sets of maximum
 likelihood estimates (six quality classes in two direc-
 tions), we produced plots of the likelihood surface with
 95% confidence regions (see Appendix A, Fig. Al).
 The 95% confidence regions suggest that only the best
 location quality class, 3, is approximately Gaussian in
 both directions, all others are better modeled by a t
 distribution. Resulting point estimates (see Appendix
 A, Table Al) are subsequently treated as known pa-
 rameters used within the state-space model. Given that
 not all Argos tags function equally (M. C. James, per-

 500
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 290? 300' 310"
 FIG. 1. (A) Plot of hooded seal track data, with observed

 locations as open circles and state estimates from the DCRWS
 (first-difference correlated random walk switching) model as
 red and blue filled circles. Red circles are state estimates

 associated with migrating behavior, and blue circles are state
 estimates associated with foraging behavior. The black line
 is the straight-line path between observations and the gray
 line is the straight-line path between state estimates. (B) Plot
 of hooded seal track data, with observed locations as open
 circles and interpolated locations as red diamonds. Inset pan-
 els show details of the foraging bout highlighted in the main
 panels. The black line is the straight-line path between ob-
 servations and the gray line is the straight-line path between
 interpolated locations. Note the three extreme observations
 indicated by the large circles. The track (in both panels) orig-
 inated off Maine, USA (bottom left), and terminated south
 of Greenland (top right).
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 sonal communication) and we only have independent
 data for one tag type (Vincent et al. 2002), we also
 include an additional scale parameter that we estimate
 directly within the model. This parameter serves to
 inflate or deflate (uniformly) the standard errors of the
 t distributions as determined by the data.

 Data analysis

 To illustrate the utility of our state-space framework,
 we consider three movement pathways, each posing
 distinct challenges for analysis. The first data set is of
 a juvenile male hooded seal, Cystophora cristata (Erx-
 leben 1777), (Fig. 1A) where a location was observed
 almost every day but at varying times of day. With the
 exception of three extreme values (Fig. 1, large circles),
 estimation error appears small but there appears to be
 more than one underlying behavioral process (e.g., for-
 aging and migrating). The data are available online.4

 The second and third data sets are of adult gray seals
 tagged off of Sable Island (seals 617 and 2986 from
 Austin et al. 2003; Fig. 2A is female 617, Fig. 2B is
 male 2986). Transmitters on these individuals were set
 to record locations every second day on which multiple
 locations were observed over varying time intervals.
 The male gray seal data set represents a case of nu-
 merous dubious observations, some clearly extreme
 and others less so (Fig. 2A, open circles). The female
 data set represents a combination of both complex be-
 havior and numerous extreme observations (Fig. 2B).

 We utilize the freely available software packages,
 WinBUGS and R, to fit the DCRW and DCRWS state-
 space models to the data (software available online).5,6
 WinBUGS enables Bayesian analysis of statistical
 models via Markov Chain Monte Carlo estimation

 methods. Nonlinear and/or non-Gaussian state-space
 models utilize Bayes' rule as an updating algorithm
 (Jonsen et al. 2003), consequently WinBUGS is suit-
 able for fitting state-space models. Because our anal-
 ysis is Bayesian in nature, we specify priors for all
 unknown parameters. We use vague priors throughout,
 specifically, uniform priors for 0 and ae, a Wishart prior
 for Y, and a Beta prior for y. We note here that the
 current functionality of WinBUGS requires v - 2 and
 as a consequence all estimates of v < 2 were con-
 strained to be 2. This constraint will have little effect

 because, in the relevant cases, a t distribution with v
 = 2 is still a marked improvement over the Gaussian
 distribution. WinBUGS code for both models including
 details of these priors are included in the Supplement.
 Upon fitting the state-space models, we obtain param-
 eter estimates, estimates of the unobserved states, and
 interpolated estimates of the observed locations. For
 ease of presentation, we display interpolated location

 4 (http://whale.wheelock.edu/whalenet-stuff/StopHoods04/)
 5 (http://www.mrs-bsu.cam.ac.uk/bugs/winbugs/

 contents.shtml)
 6 (http://www.R-project.org)
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 FIG. 2. (A) Plot of gray seal 617 track data, with state
 estimates from the DCRW model overlaid in red. (B) Plot of
 gray seal 2986 track data, with state estimates from the
 DCRWS model overlaid in red and blue. Red circles are state

 estimates associated with migrating behavior, and blue circles
 are state estimates associated with foraging behavior. Both
 seals' tracks originated and terminated at Sable Island, Nova
 Scotia, Canada.

 estimates for the hooded seal example only (Fig. iB).
 Using the hooded seal data set, we also present a com-
 parison of movement parameters derived from the state
 estimates with those obtained from the original data
 after regularization (Appendix B).

 RESULTS

 Both models deal similarly with the extreme obser-
 vations highlighted in Figs. 1A and 2 by producing
 reasonable state estimates. The three extreme obser-

 vations highlighted in Fig. 1A are clearly downweight-
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 TABLE 1. Posterior medians and 95% credible limits for parameters estimated from the
 DCRWS (first difference correlated random walk switching) model.

 Data set

 Hooded seal Gray seal 617 Gray seal 2986
 Parameter 0.025 0.5 0.975 0.025 0.5 0.975 0.025 0.5 0.975

 0, -0.07 0.04 0.16 -3.11 -1.81 3.13 -0.33 -0.07 0.19
 02 -3.13 -2.70 3.13 -3.11 -1.76 3.12 -3.10 1.92 3.09

 Y 0.71 0.83 0.94 0.06 0.52 0.98 0.50 0.76 0.99 Y2 0.07 0.62 0.94 0.01 0.34 0.97 0.01 0.15 0.52
 ao 0.45 0.85 0.96 0.05 0.43 0.91 0.04 0.23 0.56
 0-2 0.03 0.09 0.20 0.07 0.59 0.96 0.80 0.93 0.98
 Crlon 0.09 0.13 0.20 0.34 0.49 0.71 0.19 0.26 0.35

 o7,at 0.04 0.06 0.09 0.07 0.09 0.14 0.11 0.15 0.20
 Notes: Column heads indicate quantiles: 0.5 (median) and 0.025, 0.975 (95% credible limits).

 Subscripts I and 2 index the migrating and foraging behavioral modes, respectively. Process
 variability was assumed to be constant between the behavioral modes but differed between

 latitude and longitude. Mean turning angle (0) is measured in radians; ,,lo and ,,,at represent
 process variance measured in units of degrees longitude and latitude, respectively; y determines
 the degree of correlation in both move speed and direction; and oa is the probability of being
 in behavioral mode 1 at time t, given the same behavioral mode at time t - 1; X2 is the
 probability of being in behaviorial mode I at time t, given behaviorial mode 2 at time
 t - 1.

 ed and more subtle filtering is also evident wherever
 the interpolated locations are displaced from the ob-
 served locations (Fig. lB). Much more dramatic fil-
 tering is evident for the gray seal data (Fig. 2), where
 a substantial portion of the observations are clearly
 erroneous.

 Comparisons of DCRWS estimates for the two be-
 havioral modes (Table 1) suggest the DCRWS model
 is a better fit to both the hooded seal and gray seal
 2986 data but not to gray seal 617. The 95% credible
 limits of ^, and ^2 for gray seal 2986 show minimal
 overlap and those for 01 and 02 suggest substantially
 different concentrations about the median (Table 1).
 Similarly, for the hooded seal data, the O's indicate
 forward movement with only small turns when mi-
 grating and frequent course reversals when foraging
 (Table 1). Although the 95% limits of the ^'s for the
 hooded seal do overlap substantially, the pattern does
 suggest more persistent movements when migrating
 than when foraging. There appears to be insufficient
 data on foraging movements to reliably estimate y,2 for
 the hooded seal. For gray seal 617, both the ^'s and
 O's overlap substantially, suggesting that the DCRW
 model is a better fit to these data (Table 1). The presence
 of distinctly different behaviors is quite apparent in
 Figs. I and 2B, but much less so in Fig. 2A.

 The process variance estimates indicate that there is
 considerably more variation in east-west movements
 than in north-south movements; compare lon vs. Ulat
 estimates (Table 1). For the hooded seal, this is sub-
 stantiated by the fact that there are relatively uniform
 step lengths as the seal traveled north (approximately
 50' and 600 N) and more variable step lengths as it
 traveled east (approximately 700 to 500 W) and foraged
 along the Greenland coast (60' N; Fig. iB). The dif-

 ferences are even more dramatic for gray seal 617 (Ta-
 ble 1), although they are difficult to visualize (Fig. 2A).

 For both the hooded seal and gray seal 2986, move-
 ment is highly persistent in direction and speed while
 migrating (compare y's, Table 1) and course reversals
 and changes in speed are more prevalent while foraging

 (compare O's and y's, Table 1). Estimates of the switch-
 ing rates between behaviors reveal a high probability
 of remaining in either the migrating or foraging mode

 (0ot and 1 - %2, respectively, Table 1) for the hooded
 seal. For gray seal 2986, there is an intermediate prob-
 ability of remaining in the migrating mode (a,, Table
 1) and a high probability of remaining in the foraging
 mode (1 - a2, Table 1).

 DIscussION

 The general framework developed here emphasizes
 the flexibility and power of a state-space approach.
 Although we have illustrated our approach using Argos
 satellite data, the methods are applicable for any re-
 motely sensed movement data, including those ob-
 tained via GPS, radio, and archival tags. Indeed, issues
 of robustness and/or irregularly sampled data are com-
 mon (although not equivalent) among these data types
 and must be dealt with in an objective, statistically
 sound manner. We suggest that, wherever possible, re-
 searchers conduct and include in their publications the
 results of experiments that quantify estimation errors
 for their tracking devices under conditions typically
 encountered in the field.

 Our state-space framework has several useful fea-
 tures. First, when ancillary data are available, the state-
 space framework can explicitly model the known error
 distribution(s) of the locations via the measurement
 equation. Here, we chose to deal with errors in Argos
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 locations by estimating parameters of the error distri-
 butions from an independently collected data set and
 subsequently holding these parameters fixed in the
 state-space model. We find that the t distribution is
 more appropriate than the Gaussian for modeling these
 errors. In a Bayesian context, even when quantitative
 information regarding error distributions do not exist,
 e.g., radio telemetry data, prior distribution(s) can be
 constructed to reflect qualitative knowledge of condi-
 tions that may affect estimation errors. Second, infor-
 mation regarding an animal's position is not lost when
 it is obscured by substantial estimation error. Ad-hoc
 filters necessarily remove such locations potentially
 leading to substantial information loss (see Austin et
 al. 2003, for an evaluation of some ad-hoc filters). In
 addition, ad-hoc filters do not deal with estimation error
 present in locations that pass the filter, whereas all lo-
 cations are filtered in the state-space framework and
 this leads to more reliable parameter estimation. Third,
 credible limits can be obtained for each state estimate,
 thereby providing an explicit quantification of uncer-
 tainty. This is particularly useful when overlays of fil-
 tered pathways on spatial environmental data are de-
 sired (e.g., Luschi et al. 2003). Finally, our framework
 is the basis for detailed analyses such as inferring
 switches between behavioral states (Morales et al.
 2004) and more general estimation of behavioral pa-
 rameters (Jonsen et al. 2003).

 When dealing with location data, we believe that
 specifying a random walk on the differences between
 locations is a more sensible approach for modeling an-
 imal movement from location data than simply a ran-
 dom walk on the locations themselves. This makes in-

 tuitive sense because the differences in location rep-
 resent much of the behavior in which ecologists are
 interested, i.e., speed of travel and direction. We show,
 via the switching (DCRWS) model, that the first dif-
 ference CRW model can be generalized to deal with
 more complex types of movement. Switching models
 are perhaps most useful for quantifying movements
 over long time periods or in heterogeneous environ-
 ments where the data likely represent a complex com-
 posite of two or more distinct behaviors (Morales et
 al. 2004). In most cases, visualization of the movement
 pathways may be adequate to confirm the presence of
 multiple behaviors but estimation provides not only
 movement parameters for each of the behavioral com-
 ponents but also an objective method for apportioning
 the data among these components. When desired, this
 approach will obviously facilitate more detailed anal-
 yses on the individual behavioral components.

 Unlike Morales et al. (2004), who also fit switching
 models to movement data (by first calculating turning
 angles and movement speeds), we do not assume that
 estimation error is negligible. We have shown here that
 accounting for estimation error requires robust, flexible
 methods that can be achieved in a state-space frame-
 work. In order to take the approach of Morales et al.

 (2004), who calculated turning angles and movement
 speeds from GPS location data, one would necessarily
 need to first decompose the errors in location before
 one could directly model turning angles and movement
 speeds. Using our state-space framework, such a de-
 composition is unnecessary because we can derive
 turning angle and movement rate distributions directly
 from the state estimates.

 CONCLUSION

 Our proposed state-space framework represents a
 significant improvement, in terms of removing noisy
 data, over current traditional, non-likelihood-based
 methods. However, the true value of the state-space
 approach lies in its ability to directly model movement
 behavior in a flexible and reliable manner with robust

 methods for dealing with the error structure of the data.
 Future work will need to focus on (1) improving our
 knowledge of Argos error distributions; (2) incorpo-
 rating biological and environmental constraints on
 movements directly into the DCRW models; and (3)
 modeling the effect of internal states and environmental
 covariates on movement behavior. Ultimately, we wish
 to utilize our framework to link movement data to quan-
 titative models of animal movement behavior, such as

 home range and territorial dynamics, foraging behavior,
 and migration (e.g., Grtinbaum 1998, Clark and Mangel
 2000, Morales et al. 2004).
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 APPENDIX A

 Likelihood surface plots and ML point estimates of Argos error distribution parameters are available in ESA's Electronic
 Data Archive: Ecological Archives E086-156-A1.

 APPENDIX B

 A description of the data regularization procedure and a comparison of movement parameters are available in ESA's
 Electronic Data Archive: Ecological Archives E086-156-A2.

 SUPPLEMENT

 The code and sample data for state-space analysis of Argos movement data are available in ESA's Electronic Data Archive:
 Ecological Archives E086-156-S1.
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